
Computer Science
Department
Software Technology Group

Dynamic Call Graphs for
Measuring Precision and
Recall of Static Analyses
Dynamische Aufrufgraphen für die Messung von Präzision und Recall von statischen Analysen
Bachelor thesis in the department of Computer Science by Anas Attia
Date of submission: October 14, 2024

1. Review: Prof. Dr.-Ing. Mira Mezini
2. Review: Dr. rer. nat. Sven Keidel
Darmstadt

Erklärung zur Abschlussarbeit gemäß §22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Anas Attia, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB der
TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und
anderer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt. Die von mir
bei der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich benutzte
Literatur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet und gesondert
aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, October 14, 2024
Anas Attia

2

Abstract

This thesis aims to contribute to the discourse on static call graphs, which are critical
in program analysis and software quality assurance. Although they play an important
role in the field, potential inaccuracies caused by variations in their construction and
the complexities introduced by different language-specific features often challenge them.
This includes traditional methods when evaluating real-world programs. In this context,
recent research has proposed a strategy to measure the quality of call graphs by using
them as artifacts in various experiments. In this work, we analyze an existing project
corpus consisting of real-world Java programs. The objective is to evaluate whether these
programs can serve as a suitable foundation to improve the accuracy and precision of
an existing artifact designed to assess call graphs, thereby contributing to the ongoing
development and improvement of software analysis techniques.

3

Zusammenfassung

Diese Arbeit soll einen Beitrag zum Diskurs über statische Aufrufdiagramme leisten, die
für die Programmanalyse und die Qualitätssicherung von Software von entscheidender
Bedeutung sind. Obwohl sie in diesem Bereich eine wichtige Rolle spielen, werden sie
oft durch Ungenauigkeiten aufgrund von Unterschieden in der Konstruktion und der
sprachspezifischen Komplexität, in Frage gestellt. Dies gilt auch für die traditionellen
Methoden zur Bewertung von Programmen in der realen Welt. In diesem Zusammen-
hang hat eine aktuelle Forschung eine Methodik vorgeschlagen, um die Qualität von
Aufrufgraphen zu messen, indem sie als Artefakte in verschiedenen Experimenten ver-
wendet werden. In dieser Arbeit analysieren wir einen bestehenden Projektkorpus, der
aus realen Java-Programmen besteht. Ziel ist es, zu evaluieren, ob diese Programme als
geeignete Grundlage dienen können, um die Genauigkeit und Präzision eines bestehenden
Artefakts zur Bewertung von Aufrufgraphen zu verbessern und damit einen Beitrag zur
Weiterentwicklung und Verbesserung von Softwareanalysetechniken zu leisten.

4

Contents

Abstract 3

1 Introduction 7

2 Methodology and Related Work 9
2.1 Input Program . 9
2.2 Input Corpus and Fuzzing . 10
2.3 Static Analysis and Dynamically Sampled CG 11
2.4 Evaluation . 11

3 Survey of Corpus 12
3.1 Excluded Programs . 14

3.1.1 IDE . 15
3.1.2 SDK . 15
3.1.3 Diagram Generator and Data Visualization 16
3.1.4 Programming Language . 16
3.1.5 Database . 16
3.1.6 Games . 17
3.1.7 3D, Graphics and Media . 18
3.1.8 Parsers, Generator and Make . 18
3.1.9 Testing . 19
3.1.10 Middleware . 20
3.1.11 Tool . 21
3.1.12 Conclusion . 22
3.1.13 Limitations . 22

4 Case Study 24
4.1 Testing Environment . 24

5

4.2 Analysed Program . 25
4.2.1 Entrypoint . 26
4.2.2 Fuzzer class . 29
4.2.3 Docker File . 31
4.2.4 Fuzzing Corpus . 32
4.2.5 Program Coverages . 32
4.2.6 Conclusion . 35

5 Future Works 36

6 Conclusion 37

Acronyms 38

Appendices 45

6

1 Introduction

Static call graphs are widely used and essential for understanding program behavior. They
enable features such as code optimization, bug detection, and security analysis and can be
used to measure the quality of the graph itself when multiple graphs are presented. Since
then, many researchers have started and are still researching in order to find out new static
call graph analysis methods, which have been proposed and developed by contributors in
this field [1, 2, 3, 4]. Despite their importance, current techniques for constructing call
graphs often suffer from limitations in precision and recall [4]. Addressing this challenge
requires new methods to better approximate a program’s behavior [4]. While there has
been a continuous effort over the years to propose new methods, these methods still face
some limitations [4]. Given that the effectiveness of many follow-up assessments depends
heavily on the quality of call graphs, it remains challenging to establish clear ground truth
for real-world programs [4]. Therefore, it is crucial to assess their accuracy using two key
metrics: precision and recall.
Precision refers to ”the percentage of calls in the static CG that can be executed at runtime
” [4]. While Recall is ”the percentage of calls executable at runtime that occurs in the static
CG” [4]. To address this, Dominik Helm et al. [4] introduced a method using dynamic
baselines to assess the quality of various call-graph algorithms in Java programs. With
these dynamic baselines, the quality of various call-graph algorithms of Java applications
was evaluated. Precise measurement depends upon something called the ground truth
call graph, understood to be the most complete, most accurate set of real calls between
functions or methods in a program, considering each potential execution path inside it.
However, no method or computation generally available has identified all those paths in
every possible situation. One serious issue is that real-world applications actually differ so
much from lightweight programs that have no more than several lines of code and classes.
For such complicated real-world programs, only the best ground truth in constructing call
graphs requires all possible function calls that can be caused by such dynamic features as
reflection [5] or polymorphism [6] at runtime and cannot be predicted effectively by static
analysis without taking in consideration the dynamic baseline [4]. This goes further in

7

object-oriented programming. Programs used in the artifact are based on real-world Java
programs, which were implemented by many contributors in a certain period. Since an
actual ground truth call graph is absent, many have resorted to heuristics to evaluate Call
Graphs’ qualities [4]. In the next small paragraph, the three limitations of prior works
will be mentioned:

1. A common one is using ”micro-benchmarks” with call graphs that are manually
constructed rather than generated automatically by a tool or algorithm and then
comparing those against the output of static call graph analyses. This method
remains limited because of reflection and polymorphism in object-oriented program-
ming when applied to real-world programs [4].

2. Comparing the sizes of Call Graphs produced by various algorithms: Some of them
are, for example, CHA [7][8] RTA [9]. That is, however, problematic because a
smaller Call Graph might signify a decrease in recall, indicating missed elements,
which doesn’t necessarily mean a higher precision [4].

3. Amore ”advantageous” approach involves using dynamic baselines, where call graphs
are constructed from execution traces and serve as a benchmark for evaluating static
call graphs [4].

In the Methodology and Related Work section (Section 2), an overview of prior work is
provided, along with a discussion of the strategies introduced to add programs to the
benchmark. The section is divided into 4 sub-sections, which is basically the process
of evaluating the call graphs. The input program, corpus and fuzzing process, static
and dynamic call graph are generated, and then the evaluation is done. The criteria for
choosing the programs are mentioned in Section 3. In the next part, we will introduce the
process used for evaluating an existing corpus and enhancing the benchmarks.
In this thesis, we will benefit from the above-mentioned methodology. First, we will
investigate which programs are suitable for the artifact benchmark. The analysis of a
corpus is presented in Section 3 and the explanations of why programs are excluded
from further analysis and why they are not suitable for the benchmark. We have used
for our analysis an existing repository of JavaQualitasCorpus [10]. In the last sub-section
of Section 3, we have also identified additional limitations other than those that are
mentioned in this part, that we have faced during the analysis of the corpus [11]. Then,
we presented in Section 4 a case study on the coverage of a selected program, which
fulfilled the criteria mentioned. The steps taken to integrate the program into the artifact
are also described in its subsections. This includes the inputs corpus, the implementation
of the entry point of the fuzzer, and the obtained coverage reports, which show the
instructions that were reached within the program during the fuzzing process.

8

2 Methodology and Related Work

This section discusses previous research on measuring the precision and recall of multiple
static CG analyses, the methodology that has been shown. It presents related work that
influenced our study design.

First, a Java program to analyze is selected. This program will be the target of the fuzzing
process. It was selected from XCorpus [12] with taking into consideration some conditions.

Then comes the next part, static analysis using various frameworks (OPAL [13], Soot [14],
WALA [15] and Doop [16]) to generate the static CG, and at the same time, the Java
program is executed using dynamically generated inputs to construct the dynamic CG.
A short overview of OPAL, Soot, WALA, and Doop: They are available frameworks that
can construct static CG. Each framework has its own set of algorithms and techniques for
building and analyzing call graphs, along with additional features for each of them.
In addition, the input corpus for the dynamic analysis is constructed through a combination
of existing data sets, manual input creation, and automated fuzzing techniques to explore
as many code paths as possible [4].

Finally, the static CG is compared against the dynamic CG by comparing their respective
method calls and call edges to compute precision and recall. This process allows us to
assess the accuracy with which each static analysis framework models the actual runtime
behavior of the program [4].

2.1 Input Program

This program serves as the starting point for the methodology and will be used as input
for both static and dynamic analyses. The program is chosen based on its suitability
for evaluating the precision and recall of multiple static call-graph CG analyses. The
selection ensures that the program has a diverse set of code paths and behaviors that cover

9

a significant portion of the features of the program, so that it can be accurately captured
by the different static and dynamic analysis frameworks. The criteria that are decisive for
choosing programs are in Section 3. This initial step is crucial as it forms the basis for the
following analysis procedures [4].

2.2 Input Corpus and Fuzzing

The input corpus for dynamic analysis is constructed using a combination of techniques
and is outlined in the following paragraph. We utilize existing datasets as initial seed
inputs. A part of the seed inputs is called a dictionary, and one of the sources is AFL [17].
Then, manually extend these inputs to explore additional code paths that were not covered
by the initial corpus [4]. To achieve better coverage further, we employ automated fuzzing.
Fuzzing is a software testing method that generates diverse, ”random”, and potentially
unexpected inputs to explore various execution paths of a program. It is used for many
purposes, but in our case, it is used to improve the code coverage of Java programs.
However, in the study, a more specialized form of fuzzing known as greybox fuzzing [18]
is employed. Greybox fuzzing uses instrumentation to collect feedback, such as code
coverage information, which guides the mutation of inputs to discover new paths within
the target program. The fuzzer used in this study is Jazzer, a fuzzer that is specifically
designed for Java programs and based on the widely used LibFuzzer framework [19]. The
fuzzing process begins with a set of initial inputs (the corpus mentioned before), which
are mutated systematically to discover additional execution paths and edge cases, thus
expanding the coverage of the dynamically sampled call graph [4]. This coverage-guided
approach ensures that the dynamically sampled CG captures a broader spectrum of the
program’s behaviors. Consequently, greybox fuzzing minimizes manual effort in input
creation and reduces over-approximation by only executing the inputs from that specific
entry point of the program [4]. Fuzzing is particularly effective at discovering edge cases
and failure paths that are often missed by manual input creation. This comprehensive
input corpus generation process ensures that the dynamically sampled CG provides a
reliable approximation of the ground truth [4].

10

2.3 Static Analysis and Dynamically Sampled CG

We perform static analysis on the selected program using various frameworks such as OPAL,
Soot, WALA, and Doop. Each framework applies different algorithms, such as CHA [7]
and RTA [20], to generate a static call graph. These static CGs represent the potential
method calls that may occur during the program’s execution. Simultaneously, we execute
the program using dynamically generated inputs to record the dynamically sampled call
graph, which captures the actual method execution that occurs during runtime. This step
allows us to establish a baseline for comparison between the static and dynamic behaviors
of the program [4].

2.4 Evaluation

The static call graphs against the dynamic baseline to measure precision and recall, as
described in Section 2.2 and Section 2.3. We compare the static CG generated by each
framework against the dynamically sampled CG. Precision is calculated as the proportion
of correctly predicted call edges in the static CG relative to the dynamic CG. At the same
time, recall measures the proportion of dynamic edges that are captured by the static CG.
This evaluation provides a quantitative assessment of how accurately each static analysis
framework captures the actual runtime behavior of the Java program.

The figure below summarizes the methodology used in the research [4].

Figure 2.1: Architecture for measuring Precision and Recall of multiple Static Call-Graph
analyses [4].

11

3 Survey of Corpus

In the following section, we will provide a detailed overview of the available programs,
indicating whether each is a standalone Java application or not and to which category
the program belongs. This categorization will permit a better understanding of the
nature of the analyzed repositories and allow through its domain to separate each of
them. Before we show a hierarchical diagram, which summarizes the earlier-mentioned
classification , a term that should be clarified here, which is a ”standalone Java application”
A standalone Java application is a self-contained program that runs independently of an
application server. It runs on its own JVM. It typically starts from the main method, which
is the application’s entry point and can take parameters. Standalone applications can be
packaged as simple JAR files containing only the class files [21, 22].

The programs chosen for analysis in the previous research are sourced from the XCor-
pus [12]. For evaluating the new programs and extending the benchmark, programs from
JavaQualitasCorpus repositories on GitHub [10] are investigated. This corpora includes a
diverse set of Java projects that serve as the foundation for the evaluation. The projects
vary in age, with some originating from different years, and a few have reached their EOL.
In the Github [10], it exists 116 repositories, but in practice, there are 112 programs. This
is because there are different versions of the following repositories which are: xerces,
hsqldb, ant.

12

Figure 3.1: Hierarchical diagram of JavaQualitasCorpus categorization

13

As shown in Figure 3.1, the hierarchical diagram presents the categorization provided by
the corpus [11]. Given the collection of open-source projects in the JavaQualitasCorpus
repository, it is essential to start with a thorough inspection. Currently, the repository
includes 116 repositories. However, not all of them are suitable candidates for applying
our proposed methodology. Whether a program from JavaQualitasCorpus is a standalone
application or a library is not a sufficient criterion to determine its suitability for the
methodology. There are additional limitations associated with some categories shown in
the mentioned diagram, which are:

1. Single Machine Execution: The program should be executable on a single machine,
without the intervention of a third-party component [4].

2. No dependency on GUI, Network or Interactive Input: The key functionality of
the project should not depend on GUIs, network traffic, or user interactions [4].

3. Substantial entry point coverage: The program should provide one or more
program entry points that exercise a significant portion of the program’s functional-
ity [4].

4. Structured Input Format: The program should take as input a structured format
such as grammar and XML for which there already exist corpora and that would be
appropriate for mutation-based fuzzing [4].

5. Diverse Application Domains: The selection of projects shall cover a variety of
application domains and also use different formats as input. For example, if some
projects come from similar domains, only one of them is selected [4].

3.1 Excluded Programs

In this section, we will look through the projects that were not considered because they
could not satisfy some criteria. Figure 3.1 divides the repositories into clear groups
using this hierarchical diagram. From these same groups, we excluded projects that were
unsuitable to our approach. This analysis shall give a complete insight into the selection
process and the restriction that is tagged to each category. While analyzing the programs
from [10], we faced several challenges in evaluating the projects. Many of them were
developed with outdated dependencies and require older versions of Java. This makes it
difficult to build and run them onmodern operating systems such asWindows 11 or Ubuntu

14

v22.04.4 LTS. In addition, the absence of unit tests in many cases prevents the verification
and the understanding of code. In some cases, there was also a lack of documentation
appended in the source code, which caused some limitations in understanding all the
features of the program. For this section, we only mention the version provided on
JavaQualitasCorpus repository [10]. This is because there are some differences in the
sub-versions of the catalog and the corpus on GitHub. There is a slight difference in
version, but most of the use cases of the program remain the same.

3.1.1 IDE

First, IDE domain containing checkstyle-5.6 [23]. This program ensures that a user has
to write Java code in a predefined style. Concretely, it does a static code analysis before
the execution. The program has diverse add-ons, and on top of that, it is hard to obtain
a corpus of style files in version 5.1. That means there is a limitation with consuming
program input, hence the fourth criterion is not fullfilled. The program nakedobjects-
4.0.0 [24] is a framework for creating object-oriented user interfaces and providing a
choice of different styles. A client-server setup is also possible, and that means that the
second criterion is not met. The rest of the programs, eclipse_SDK-3.7.1 [25], drjava-
stable-20100913-r5387 [26], and netbeans-7.3 [27], are considered IDEs that help
developers write, debug, compile, and much more. Many criteria are not fulfilled since
they depend heavily on the GUI and network traffic and don’t accept a structured Input
format. Hence, the IDE category is completely excluded.

3.1.2 SDK

Starting with colt-1.2.0 [28], this program is already excluded, as mentioned in the
research paper [4]. geotools-9.2 [29] considered as a library rather than a standalone
Java application, with which working with geospatial data. Therefore, this program
could not be a suitable candidate for the artifact, since it gives no obvious entry point for
covering programs paths. About the rest of SDKs jchempaint-3.0.1 [30], jFin_DateMath-
R1.0.1 [31], jpf-1.5.1 [32], and trove-2.1.0 [33], they are considered as libraries and
collections of utilities for different purposes which has to be embedded in an existing java
program. In that case the third criterion is not met.

15

3.1.3 Diagram Generator and Data Visualization

This category contains 10 programs. Those programs fall into two sub-categories:
Programs depend on user interaction with GUI such as jext-5.0 [34], which is basically
a text editor [34] and libraries that are usually embedded in Java programs such as
jung-2.0.1 [35] which is a java graph/network library. Regardless of the circumstances,
this category does not meet the second and third criterion.

3.1.4 Programming Language

We look into a smaller category in this corpus, namely Programming language. This catalog
contains aspectj-1.6.9 [36], jre-1.6.0 [37] and jruby-1.7.3 [38]. All three programs
function as libraries, extensions, or runtime environments that need to be used within
the context of a larger Java program in order to determine their behaviors. That’s why
an independent execution and an obvious entry point are not offered. Hence, the third
criterion is not met.

3.1.5 Database

To start with, we will exclude axion-1.0-M2 since this program is already added to
the benchmark and org.axiondb.tools.Console.execute was chosen as an entry
point [4]. This category contains azureus-4.7.0.2 [39], formally named Vuze. It is basi-
cally a BitTorrent Client, which depends a lot on GUI, and even if the terminal still exists,
the main functionality depends heavily on the network since the program uses peer-to-peer
networking protocol, hence depending on other machines. That’s why criterion two is
not met. Next, we have c_jdbc-2.0.2 [40], which provides the possibility to communicate
across multiple database clusters, such as sending, receiving, and updating data. This
requires a complicated setup and cannot reach coverage using only one machine. That
means criterion is not met. For the rest of the programs in this category, we will divide
them into two sub-categories:
Object-relational mapping (ORM): hibernate-4.2.0 [41] and cayenne-3.0.1 [42].
Generally, ORMs are categorized as libraries, which have to be integrated into a project.
It aims to simplify database operations by allowing it to work with Java objects instead
of using normal SQL queries, for example. Hence, it cannot run separately and has no
obvious entry point.
The three programs left are relational database management system:

16

hsqldb [43], hsqldb-2.0.0 [43] and derby-10.9.1.0 [44]. Could be embedded in Java
programs in order to test, deploy, and develop database applications. All of them consume
SQL queries. That means it comes from the same domain as Axion and consumes the
same file input formats. Hence the fifth criterion is not met. Squirrel_sql-3.1.2 [45]
graphical SQL client allows one to view the structure of a database, browse the data in
tables, and issue SQL commands. It doesn’t provide a command line to cover its features.
The available command line interface is used basically to write SQL statements. Since the
program depends a lot on GUI, the second criterion is not met.

3.1.6 Games

The next category is games containing only three programs. First, freecol-0.10.3 [46]
has no obvious entry point, it needs also to have a corpus of audio sounds, a dataset
of keyboard and mouse interactions suitable for the game, plus handle and avoid game
crashs problems while fuzzing. Moreover, it depends a lot on GUI and user interaction.
The game does have a command line, but it was only for client options and to get game
global information [46]. In case of looking for a solution, a third party to simulate user
interaction will be required.
We also have marauroa-3.8.1 [47] a Game engine rather than a game. Relies on Network
using Transmission Control Protocol (TCP). Other than that, a pre-defined setup, such
as database connection and check of event handling, during fuzzing is needed. That
requires separate types of the corpus, other than real-time game checks; security and
server connection are also relevant parts of the program. There might be a solution also if
there is a game built with exactly that version, which covers all possible features of the
engine [47]. In that case, it is problematic to obtain such a game.
The third program is megamek-0.35.18 [48]. A significant Portion of code is based on
UI Swing API, in-game options, actions, events, and host setup since it supports online
multiplayer. Multiple Game Scenarios and Saved Game Files are also required for that.
Logs of real gameplay interactions may be required as well. Files that are simulating
those scenarios are hard to find. Since also the unit tests are limited to only some classes
and methods of the program, makes fuzzing harder. This category is challenging to fuzz,
making it difficult to achieve comprehensive code coverage.

17

3.1.7 3D, Graphics and Media

First program batik-1.7 was added to the benchmark and org.apache.batik.apps.
rasterizer.SVGConverter.execute was the entry point [4]. Passing to aoi-2.8.1 [49],
its full name was art of illusion. It depends a lot on animation, GUI, and mouse events.
It is complex to fuzz because of criterion two. Then, drawswf-1.2.9 [50], a standalone
drawing application, can export the projects as SWF files (animated flash files) and SVG
format when the user doesn’t use animations. Also, drawing ellipses and lines, importing
pictures, and other features. criterion two is not met.
We also have galleon-2.3.0 [51], a home media server that works on old versions of TiVo.
Multiple Corpus are needed here, such as diverse audio files including mp3, wav, video
files mp4, mpeg-2 and photos. This also requires automation, which is problematic to
integrate into the fuzzer. In addition, networking and the presence of more than one
device is necessary, plus an emulator for a TiVo device. Next is jhotdraw-7.5.1 [52] a two-
dimensional graphics framework for structured drawing. It is challenging to fuzz due to a
lack of command line and test suites that cover the majority of classes and functionalities.
A Java 3D Rendering Software is sunflow-0.07.2 [53], which enhances the visual quality
of 3D scenes by calculating lighting, shadows, and reflections. Files .sc are required (scene
files). Challenging to get a corpus of supported 3D scene files for that specific version. Last
in the category is joggplayer-1.1.4s [54], a Moribund program [11], which requires Ogg
Vorbis compressed audio file format, similar to MP3 used to provide better sound qualities.
It is challenging to obtain those specifications for this version. A deep understanding of
those types of files is essential in order to generate mutated versions. In the code docu-
mentation inside the source code src.ca.bc.webarts.jOggPlayerAutoUpdating
is mentioned as an entry point for the program. Java 1.2 or Java 1.3 is required even to
run the project. which is problematic to run it on modern computers. In addition, the
fuzzing has to work on Java 1.8 or higher [55]. It would require a custom setup to feed
MP3/MP4 files into a parser and handle the input data as byte arrays or binary input
streams.

3.1.8 Parsers, Generator and Make

According to [4] Apache Xerces was already added to the benchmark and org.apache
.xerces.jaxp.DocumentBuilderFactoryImpl.parse was chosen as an entry point.
javacc-5.0 [56] is a part of this category. Since It was a good candidate, and it meets
the criteria, we have started a case study on it in Chapter 4. This program was chosen

18

from sub-category parser generators, which are antlr-3.4 [57], javacc-5.0 [56], jparse-
0.96 [58], SableCC 3.2 [59] and nekohtml-1.9.14 [60] used for creating parsers and
lexers based on grammar definitions and other structured text.

3.1.9 Testing

This category contains 12 programs. Starting with cobertura-1.9.4.1 [61] and emma-
2.0.5312 [62], both of which share a similar purpose. They can provide code quality
feedback, coverage code, and other features related to testing. Additionally, they can
provide information on how much of your code is executed during unit testing and are
used during the testing and development phases. Both programs could not run separately,
and have to be integrated into a Java program. In addition, emma-2.0.5312 needs a
corpus of Java 2, which is challenging to provide, and the fuzzer will not be able to
generate valid JAR files.
Next, FindBugs 1.3.9 [63] is a static analysis tool for Java that identifies potential bugs
by analyzing the bytecode of Java programs. However, it cannot run separately, and the
program has to consume valid JAR files to start testing, which the fuzzer cannot do during
the process.
Moving on to fitjava-1.1 [64], a testing tool used for creating acceptance tests based
on the FIT (Framework for Integrated Tests) methodology, and fitlibraryforfitnesse-
20100806 [65], a program that provides general-purpose fixtures for story tests. It is
challenging to provide a corpus of test suites valid to this version; moreover, the limitation
with both programs is that the fuzzer is unable to generate valid acceptance tests.
Then, jmeter-2.5.1 [66] is a tool used for performance testing, primarily focusing on web
applications. It can simulate multiple users and load-test different web applications and
servers. Afterwards, jrat-1-beta1 [67] is the Java Runtime Analysis Toolkit, a performance
measurement tool for Java applications. Results can be viewed using another application,
JRat Desktop. The fuzzer is unable to generate programs for it.
Moving forward, junit-4.10 [68] is one of the most popular unit testing frameworks for
Java. It provides annotations and assertions to define and run tests. The fuzzer is unable
to generate acceptance cases based on an input program.
Additionally, log4j-2.0-beta [69] is the Apache Log4j, a logging framework and library
for Java applications. Since it is a library, it has no obvious entry point.
In the next part, pmd-4.2.5 [70] is a static code analysis tool primarily for Java and other
languages such as Apex. It can detect common coding issues, such as unused variables,
empty catch blocks, and invalid variable names. The program has diverse plugins and
should be used before program execution, which is not the case with the fuzzer since it

19

needs an obvious entry point and valid input format valid to that specific version to start
the process.
Following this, quilt-0.6-a-5 [71] is a Java software development tool that measures
coverage and should be integrated with the JUnit test framework. The fuzzer is unable to
generate valid acceptance tests for a program.
htmlunit-2.8 [72] is a headless browser simulation library for Java. It allows users to
automate browsing and test web applications without using a GUI. There is no obvious
entry point, and it relies heavily on network traffic. More than one criterion here is not
met.

3.1.10 Middleware

In the JavaQualitasCorpus, middleware programs provide many services to enable com-
munication between Java applications, or systems in order to support their data exchange.
We will not go into detail about every program in this category since the programs share
the limitations that they don’t provide an entry point to start fuzzing, frameworks for web
applications, or communication tools between distributed and clusters of systems. In the
following part, we will show some examples of the category.
castor-1.3.1 [73]: an XML to Java mapping library. It has various options, which cannot
efficiently be fuzzed.
struts-2.2.1 [74], tapestry-5.1.0.5 [75], springframework-3.0.5 [76], myfaces_core-
2.1.10 [77]: Web Framework for difference purposes. For Spring Framework 3.0.5, it
is used to build Java applications and provide many tools to interact with data, building
backend for web applications and even UI for users but with limited features and through
using other extensions. They are unsuitable for our fuzzing process since they don’t
provide an entry point to cover all features.
tomcat-7.0.2 [78]: Java Webserver. Challenging to find a corpus of java programs that
exercise all tomcat features. Problematic for the fuzzer also to generate valid java pro-
grams, and in addition this program is already excluded from the previous research [4].
jboss-5.1.0 [79]: It provides a platform for hosting and running Java applications, par-
ticularly enterprise-level applications. It requires network communication and corpus of
other projects.
oscache-2.3 [80] :
A caching library for Java that can cache parts of Jakarta Server Pages pages, entire HTTP
responses, or any data structures. It used to improve performance by storing frequently
accessed data in memory. Hence it depends on network traffic and provides no obvious
entrypoint.

20

3.1.11 Tool

This section focuses on the last program category in JavaQualitasCorpus. Most of these
tools are not suitable for our fuzzing process due to issues like the lack of an obvious entry
point or their reliance on complex setups, such as networking or bytecode files.

For example, collections-3.2.1 [81] is a well-known library that provides many pre-
defined classes and interfaces, such as LinkedList and HashMap. However, this is similar
to previous libraries in this section; libraries do not provide clear entry points in order to
cover a significant part of the program. This makes it challenging to use in fuzzing process.
columba-1.0 [82] is a full-featured Java email client that depends heavily on networking,
which complicates fuzzing and doesn’t meet the second criterion. compiere-330 [83] is
an Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM)
solution designed to help businesses manage their core operations and relationships
with customers. It provides a wide range of services, running businesses, defining au-
tomated workflow rules to match business practices, sales and order management, and
much more. It also provides a Web platform to interact with services and relies a lot on
the network. Still, again, it has no obvious entry point and relies heavily on network
communication. In addition, multiple types of corpus are required to cover its features.
freecs-1.3.20100406 [84], webchat provides services such as chatting authentication
and so on. Requires a pre-setup for the local server, such as database and authentication,
to start chatting. Its lack of a JAR file on the repository and dependence on the network
make fuzzing unworkable.

Other tools like proguard-4.9 [85] and sandmark-3.4 [86], which deal with Java bytecode
obfuscation, require valid bytecode files that are difficult for fuzzers to generate during
the process. pooka-3.0-080505 [87], an email client, cannot easily fuzzed due to the
network traffic and GUI interaction.

weka-3-6-9 [88], a machine learning library, lacks easy entry points for fuzzing, which
makes it difficult to include in our process. Similarly, heritrix-1.14.4 [89] is a tool used
for saving snapshots of websites and collecting digital artifacts, which doesn’t fit well with
our fuzzing needs since it relies on a corpus of websites and connecting to the internet
during the process. james-2.2.0[90] is a Java-based mail server designed to handle
enterprise-level email operations using open network protocols, but its complexity and
network reliance make it unsuitable for fuzzing.

On the other hand, jag-6.1 [91] refers to a Java Application Generator, automating the
generation of web applications, which requires specific configurations and plays as a

21

middleware between the provided code and the application making it challenging for
fuzzing. The category contains also Jasml, which is already added to the benchmark and
com.jasml.decompiler.JavaClassParser.parse was chosen as an entry point [4].

while jedit-4.3.2 [92] is a Java programming text editor, similar to popular IDEs like
VS Code, but unsuitable for our fuzzing. jfreechart-1.0.13, jgraph-5.13.0.0 [93], and
jgraphpad-5.10.0.2 [94] all focus on data visualization. JFreeChart handles charts such
as bar charts and pie charts, while JGraph and JGraphpad are more suited for visualizing
graph structures like nodes and edges in network diagrams or UML diagrams. They share
a role in graphical data representation. Lastly, jgrapht-0.8.1 [95] is a graph theory library
that provides algorithms for calculating shortest paths, analyzing flows, and working with
complex graph structures. It allows users to implement custom graph types andmanipulate
graphs. Those last group of programs share similar purposes, but their functionalities
depend on interaction with GUI, which leads to not meeting one of the criteria. .

3.1.12 Conclusion

A significant portion of the JavaQualitasCorpus programs are unsuitable for fuzzing due
to several intrinsic characteristics that limit the effectiveness of the fuzzing process. From
the provided categories, either the whole category doesn’t contain any candidate program,
or it has a marked amount of excluded programs for our methodology to improve the
benchmark programs. Not only are the provided criteria restricted, but additional issues
are also found in the analyzed programs. In the subsection, we will provide some additional
limitations found during the program analysis.

3.1.13 Limitations

The following limitations were identified when assessing the suitability of the JavaQuali-
tasCorpus programs for the fuzzing process:

• Lack of clear entry points: Many programs, such as libraries and frameworks like
jung-2.0.1 and springframework-3.0.5. They are intended wether to be integrated
into other programs or used to build single page applications. This makes fuzzing
process difficult because they don’t provide a suitable entry point to reach a high
coverage of the program.

22

• Complexity of input formats: Programs in the testing category rely on structured
input formats, such as test suites, which the fuzzier cannot automatically generate
and always create valid acceptance tests based on the provided code.

• Unavailable open source Corpus for specific version: Some programs rely on
a specific format which has to be suitable for that specific version. For example
checkstyle-5.6

• Complicated pre-defined setup: Some programs a predefined setup such c_jdbc-
2.0.2 and colt-1.2.0. For c_jdbc-2.0.2 we require a database cluster.

• Automation and simulation: Games are considered here, because they require
an automation to simulate real-world scenarios and saved files are required, also
automation of keyboard and mouse events are needed.

• Lack of unit tests: Some programs provide a very limited amount of tests, which
leads to not understanding the full behavior of the system.

These limitations significantly reduce the applicability of fuzzing techniques for a large
portion of the JavaQualitasCorpus programs, thereby highlighting the need for alternative
testing methodologies or manual intervention to assess these applications effectively.

23

4 Case Study

All measurement coverage reports were taken using the system mentioned in the next
section. The report results may vary depending on each system’s specific characteristics
and configurations. The coverage report was generated through the JaCoCo [96], which
is included in the artifact. The resulting coverage indicates the state performance of the
artifact and how it displays the result when a program is added.

4.1 Testing Environment

This section outlines the setup used to run the artifact and fuzzing process. This setup is
also used to generate the coverage report. Physical and Software environments will be
examined first, where different tools will be cited.
The artifact can be run on different Operating Systems, such as Windows and Linux. The
Hardware resources themselves are not fixed to execute small recipes for a single project
of the benchmark. However, for very resource-intensive, we recommend at least 64GB of
RAM to record dynamic call graphs and 128GB to compute static call graphs [55]. The
table below shows the Hardware that was used to achieve execution of the benchmark.

Computer
Model: MSI Katana GF76 11UE
Processor: Intel Core i7 11th Generation
RAM: 16GB
Hard Disk: 512 GB
Operating System: Microsoft Windows 11 Home

In the section below, we will mention a list of tools for running the artifact, extending
the benchmark, and executing it. For the main compiler, Java (1.8 or higher) (version
Java SE 8 or higher) is recommended [55]. For this work, OpenJDK 17 (Java Standard

24

Edition 17) was primarily used. As Operating system Ubuntu v22.04.4 LTS has been used.
Ubuntu Server without GUI was sufficient. The interaction was through its command-line
Interface.
Docker v26.1.1 was used as a tool for containerization, and docker images such as the
XCorpus Docker image were used. just v1.25.2, a command Runner to save and run the
artifact-specific commands was also used.
For the Development Tool, Visual Studio Code v1.90 (VS Code) was used as an inte-
grated development environment (IDE) to write the implementation code and execute
the benchmark.

4.2 Analysed Program

The test setup describes a real-world scenario for benchmarking the artifact. The difficulty
was choosing a program that fulfilled the criteria for testing and analysis.
In this section, a study will be conducted on the program javacc-5.0. Java Compiler
Compiler version 5.0 is an open-source compiler. It takes a grammar specification as input
and produces a Java-based stand-alone parser. This parser can recognize matches to the
given grammar. This program was released on 20.10.2009 [11]. javacc-5.0 has 13,772
lines of code [11], excluding all comment lines and any classes not located in the src
and bin directories. javacc-5.0 is considered a standalone application. Since it can be
run on a machine without the intervention of a third party, the first criterion is fulfilled.
This program provides a command-line tool for generating parsers and lexical analyzers
based on a provided grammar file. It can be operated entirely through the command line.
The executable command javacc followed by the name of the grammar lets the user run
the javacc on the grammar(e.g., javacc grammar.jj). and then javac *.java to
execute the generated java files based on the grammar. Those commands are only for
the purposes of using the program independently of the artifact. In addition, it does not
involve network communication to generate the classes. Hence, the second criterion is also
fulfilled. An entry point covering a large part of the program’s core functionality is also
available. In this context org.javacc.parser.Main is used since the key process of it
is generating a parser based on a grammar file. Consequently, the next criterion is satisfied.
We now assess the fourth criterion, where the program processes a well-defined input
format. Since javacc-5.0 processes structured grammar files (*.jj* files), and corpora
exist after applying an approach mentioned in sub-section 4.2.4 , the fourth criterion is
met. Since the projects that were selected previously for the given artifact already vary in
their application domains, such as database management, graphics processing, and XML

25

parsing, making use of different input formats, the same happens with javacc-5.0, as it
also exploits different input formats, namely .jj files. The last criterion is also covered.

4.2.1 Entrypoint

The entry point class is a critical element in order to reach code coverage. Adding an en-
try point file is also a must for the artifact since this is the starting point where fuzzing starts.
For our program, the chosen entry point was org. javac.parser.Main.mainProgram.
This class provides methods to read and process the given grammar file and traverse direc-
tories to process multiple files recursively. Next, we will take a look at the implementation
of the entry point file.

1 import java.io.File;
2 import java.nio.file.Files;
3 import java.nio.charset.StandardCharsets;
4 import java.io.IOException;
5 import org.javacc.parser.*;

Listing 4.1: imported packages

import java.io.File; It provides the File class, which represents files and di-
rectory paths. That was used for file operations such as getting paths, reading sizes, and
navigating between directories.
import java.nio.file.Files; The Files class provides methods for file op-
erations such as reading and writing content, creating files, and more, similar to the
normal class File. java.io stands for Java input-output, which is stream-oriented, and
java.nio stands for Java new input-output, which is buffer-oriented. It executes high-
speed IO operations.
import java.nio.charset.StandardCharsets; It allows us to read and write
file content using the correct standard character encoding.
import java.io.IOException; Since files many files, inputs, and outputs are
used here, catching the exception is important. And that what being handled by the class
IOException during the read and write operation.
import org.javacc.parser.*; Imports classes from the javacc-5.0 parser library.
These classes are used to start the parsing process on the provided grammar files.
In the next part, we will look at the rest of the entry point file. Mainly, the Entrypoint class
contains three main methods (entrypoint, recurseDirectories, and main). These methods
aim to process a given file or directory using the JavaCC parser and recursively explore

26

directories if necessary.

Then, we will show the first method public static void entrypoint. The
purpose of this method is to consume a grammar file using our program.

1 public static void entrypoint(File grammarFile){
2 try {
3 System.out.println("Processing file: " + grammarFile.

getAbsolutePath());
4 long fileSize = grammarFile.length();
5 System.out.println("File size: " + fileSize + " lines");
6 if (fileSize == 0) {
7 System.out.println("File is empty, skipping

processing.");
8 return;
9 }

10

11 String content = Files.readString(grammarFile.toPath(),
StandardCharsets.UTF_8);

12 System.out.println("
**************************************File content:\n"
+ content);

13 System.out.println("
**************************************End of file
content:\n");

14

15 org.javacc.parser.Main.mainProgram(new String[] {
grammarFile.getAbsolutePath()});

16 } catch(Throwable t) {
17 t.printStackTrace();
18 }
19 }

Listing 4.2: entrypoint method

File grammarFile : The grammar file to be processed, which is located in the corpus
of the program
System.out.println("...") : That was for debugging purposes, in order to display
every time the path, file size, and content to make sure that the files are not empty.
if (fileSize == 0)... : that was to check the case whether the given file is empty
or not. In case that is empty, should the method do nothing more.

27

org.javacc.parser.Main.mainProgram : At the end of the program parser should
be called through its mainProgram method declared in the class.
Exception Handling : Through the whole block try , catch in order to prevent
the application from crashing, and in addition catch all possible exceptions.
public static void recurseDirectories Next is . The purpose here is to tra-
verse a directory recursively and process each file within it.

1 public static void recurseDirectories(File path) throws
IOException {

2 for(File inputFile: path.listFiles()) {
3 if(inputFile.isFile()) {
4 Entrypoint.entrypoint(inputFile);
5 } else {
6 recurseDirectories(inputFile);
7 }
8 }
9 }

Listing 4.3: entrypoint class recurseDirectories method

File path : The parameter given to the method represents the root directory to
traverse. The root directory here is our grammar corpus.
throws IOException : as mentioned in the part before, we have imported this pack-
age in order to catch dynamic input and output exceptions
for(File inputFile: path.listFiles()) : This method contains mainly a
for loop. The functionality is to iterate through each file in the directory and pass
it to the previous public static void entrypoint since it accepts a file as a
parameter. The method will also recursively call on the subdirectories and files.
Then, we implemented the public static void main method of the class. This
serves as an entry point for the class.

28

1 public static void main(String args[]) throws IOException {
2 if (args.length > 0) {
3 recurseDirectories(new File(args[0]));
4 } else {
5 System.out.println("Please provide a directory path as an

argument.");
6 }
7 }

Listing 4.4: entrypoint class main method

String args[] : The parameter of the main method. command line arguments for
passing directory path.
if (args.length > 0)... : When the directory path is specified, the previous
method recurseDirectories is called.
System.out.println("Please provide a directory path as an argument.") :

That was also for debugging purposes to see whether the path is given or not.

4.2.2 Fuzzer class

The JavaccFuzzer class integrates with the fuzzing library Jazzer to generate input files
for testing and executing the previous Entrypoint class. The target of the artifact expects
that the form of the file’s name is: <Program>Fuzzer.java otherwise it will occur an error
while build the docker image. The Fuzzer class tests the Entrypoint class’s robustness
against unexpected or random inputs, so adding this class is also important. Next, we
describe the method’s implementation. Before, let’s clarify the imported packages:

1 import com.code_intelligence.jazzer.api.FuzzedDataProvider;
2 import java.nio.file.Files;
3 import java.nio.file.Path;
4 import java.nio.charset.StandardCharsets;

Listing 4.5: imported packages

import com.code_intelligence.jazzer.api. FuzzedDataProvider; The
FuzzedDataProvider class is provided by the jazzer API and is used to supply randomized
data inputs for fuzzing purposes.
import java.nio.file.Files; This package was used in Entrypoint class as well.

29

The class Files Facilitates file operations such as creating temporary files, writing con-
tent, and deleting files.
import java.nio.file.Path; This class represents a file path in the system of
files. It was used to manage temporary file paths.
import java.nio.charset.StandardCharsets; The class was also used in the
entrypoint class. It ensures consistent handling of text data and encoding.
Then we pass to the rest of the class JavaccFuzzer, which contains only method, namely
public static void fuzzerTestOneInput. The method uses fuzzing data to
generate a temporary file and pass it to the process using the Entrypoint class.

1 public static void fuzzerTestOneInput(FuzzedDataProvider data)
throws Exception {

2 Path temp = Files.createTempFile("fuzzing", ".jj");
3 try {
4 byte[] fuzzData = data.consumeRemainingAsBytes();
5 Files.write(temp, fuzzData);
6 String fuzzContent = new String(fuzzData,

StandardCharsets.UTF_8);
7 System.out.println("Generated fuzzing file content:\n" +

fuzzContent);
8 Entrypoint.entrypoint(temp.toFile());
9 } finally {

10 Files.delete(temp);
11 }
12 }

Listing 4.6: javacc fuzzer

FuzzedDataProvider data : The parameter data supplies the generated data for
fuzzing.
throws Exception : During the fuzzing process various exceptions could occur, such
as IOException and many.
Path temp = Files.createTempFile ("fuzzing", ".jj");

This line of code creates a temporary file with the .jj extension using Files.createTempFile
method. Suffix .jj is meant to be the type of grammar file of the program.
data.consumeRemainingAsBytes() : Consumes the bytes of data from the Fuzzed-
DataProvider andwrites it into the temporary file using Files.write(temp, fuzzData);

30

String fuzzContent = new String(fuzzData, StandardCharsets.UTF_8); :
This converts the fuzzing data to a string format using imported class StandardCharset.
System.out.println("Generated fuzzing file content" + fuzzContent); :
This was for logging purposes.
Entrypoint.entrypoint(temp.toFile()); : After that the entrypoint method
is called in order to process the fuzzed input.
Files.delete(temp); : Ultimately, the cleanup starts by deleting the temporarily
generated file, ensuring no data is left behind.

4.2.3 Docker File

To enable javacc-5.0 within the artifact, we added a section in the Dockerfile that sets up
the necessary dependencies for the program. The following code was added:

1 ARG JAVACC_PATH=/xcorpus-src/data/qualitas_corpus_20130901/javacc
-5.0/project

2 RUN wget https://github.com/JavaQualitasCorpus/javacc-5.0/raw/master/
lib/junit3.8.1/junit.jar \

3 -P${JAVACC_PATH}/default-lib/
4 RUN wget https://github.com/JavaQualitasCorpus/javacc-5.0/raw/master/

javacc-5.0.jar \
5 -O${JAVACC_PATH}/bin.zip

Listing 4.7: Dockerfile section for javacc

ARG : command defines a build-time variable in order to set the path for javacc-5.0
within the structure so that it will be referenced later in the Docker build process.
RUN wget : executes command during the build process so that the files from the speci-
fied URLs will be downloaded

This code ensures that JUnit tests and javacc-5.0 are added to the build process and
download essential dependencies for the program.

31

4.2.4 Fuzzing Corpus

Extensive and comprehensive grammar corpora are required to ensure that the generation
of a parser is effective and correct. Due to the program’s age, plus the fact that it does not
have a widely used grammar format for that specific version, there were some limitations
in finding diverse online and large corpus containing grammar files. javacc-5.0’s file
format does not adhere to more widely accepted grammar formats such as Backus-Naur
Form [97] or Extended Backus-Naur Form [98]. Instead, it utilizes a custom language for
grammar definition through its .jj files, which include additional constructs for lexical
and semantic analysis. Thus, another approach has to be taken. Since the program’s
main directory also includes unit tests and a set of .jj grammar files, we used these as
inputs to the generation of the artifact. We have also made a custom dictionary, based
on the provided grammar files. The dictionary was created with the help of the grep
command in a Linux terminal environment. Grep is a command-line utility that can
extract specific elements like tokens, keywords, and rules by searching for patterns such
as TOKEN, SKIP, BEGIN, PARSER, and similar constructs of the .jj files. That allows us
to create a structured dictionary by identifying relevant patterns and keywords

4.2.5 Program Coverages

To evaluate the effectiveness of choosing the entry point and ensure coverage of the
core program functionality, it is essential to measure code coverage. The report includes
metrics extracted from the artifact to provide insight into which parts of the code are
being executed and which remain untested. In this section, we present figures of code
coverage obtained through fuzzing at various time intervals. These visual representations
demonstrate the progressive investigation of the codebase.
The following figures illustrate how the code coverage improves with different fuzzing
durations. We show dynamic sampled execution of 100 seconds, 300 seconds, and 1000
seconds. Each figure comprehensively views missed instructions, branch coverage, and
method execution. The results presented in these figures are the outcome of applying the
earlier-mentioned methodology.

Initial Coverage Analysis:

During the initial phase of 100 seconds, the fuzzing process achieved a code coverage of
approximately 45%. That means about 62479 Instructions out of 115664 are missed. The
branch coverage at this point was 35%, with 9148 branches missing out of 14075. This

32

indicates that the initial fuzzing phase quickly explored some fundamental code paths
but left a large portion of the codebase unexplored.

During the first 100 seconds, the org.javacc.parser package achieved a coverage of
71% for instructions and 55% for branches. This initial coverage indicates that a significant
portion of the parser logic was executed early in the fuzzing process.

Figure 4.1: Coverage report after 100 seconds of fuzzing.

Intermediate Coverage Analysis:

As the fuzzing duration extended to 300 seconds, the instruction coverage of org.javacc
.parser increased to 75% , while branch coverage improved to 62%. The number of
missed instructions in this package decreased to 2595, reflecting a better exploration of
the parser’s codebase. This improvement in coverage suggests that the fuzzer could access
more complex parsing logic and conditional branches that were not reached in the initial
phase, assumably due to the generation of a more diverse set of input scenarios over time.

33

Figure 4.2: Coverage report after 300 seconds of fuzzing.

Extended Coverage Analysis:

After running the fuzzing process for 1000 seconds, the instruction coverage for org
.javacc.parser reached 76%, and branch coverage improved to 63%. The missed
instructions were even reduced further to 2514, indicating that the fuzzer successfully
executed even more unvisited parts of the parser. This also demonstrates a significant
improvement compared to the initial results.

Figure 4.3: Coverage report after 1000 seconds of fuzzing.

34

4.2.6 Conclusion

This significant increase in coverage for the org.javacc.parser package confirms
that the extended fuzzing period allowed the tool to reach deeper code paths and cover
more branches, providing a more thorough validation of the parsing functionality and the
effectiveness of choosing the entry point. The gradual improvement in coverage metrics
indicates that extending the fuzzing session may help to reach more paths in the code.

35

5 Future Works

In this chapter, we look at what could not be addressed in this work and which aspects
could be researched further. The first one regards generating the call graphs using the
frameworks. These measurements, and especially Static CG, require a lot of system
resources [55]. This helps to reach further analysis in order to assess the precision and
recall of the case study and, therefore, evaluate the precision and recall.
The findings of this work suggest future research and improvements in the benchmark
of some topics. One of them is refining the selection criteria for the programs suited for
fuzzing. While some of them would be challenging to modify, we may still benefit from
some adjustments.
Additionally, future work could explore another public corpus for Java after modifying the
criteria. That could possibly give a better evaluation of the methodology. Future work
could examine these findings to refine the selection criteria and investigate alternatives to
enhance the benchmark.

36

6 Conclusion

In this thesis, a comprehensive analysis of various programs from the JavaQualitasCorpus
was achieved to assess their suitability for benchmarking. This analysis revealed that a
significant portion of the programs did not meet the criteria necessary for choosing an
entry point and starting the fuzzing process. Many programs were excluded due to their
reliance on GUIs, network traffic, or other interactive inputs. Categories such as IDE,
diagram generators, games, and other libraries were found unsuitable for the fuzzing since
they don’t meet the criteria and don’t provide an obvious entry point to cover a significant
portion of its features. On the other hand, the case study on the mentioned program,
which fulfilled the benchmarking criteria, demonstrated the value of extended fuzzing
periods. The increased coverage in the selected entry point highlights an important code
exploration and confirms that a longer fuzzing period could also contribute to reaching
better coverage. The case study also shows that adding programs to the benchmark is
possible if the criteria are fulfilled.

37

Acronyms

CG Call graph

GT Ground Truth

CHA Class hierarchy analysis

RTA Rapid type analysis

EOL End Of life

JVM Java Virtual Machine

AFL American Fuzzy Lop

API Application Programming Interface

JAR Java Archive

SDK Software development kit

IDE Integrated development environment

ORM Object-to-Relational Mapping

VS Code Visual Studio Code

38

Bibliography

[1] Martin Bravenboer and Yannis Smaragdakis. “Strictly declarative specification of
sophisticated points-to analyses”. In: SIGPLAN Not. 44.10 (Oct. 2009), pp. 243–262.
issn: 0362-1340. doi: 10.1145/1639949.1640108. url: https://doi.
org/10.1145/1639949.1640108.

[2] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira Mezini.
“Modular collaborative program analysis in OPAL”. In: Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ESEC/FSE 2020. Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 184–196. isbn: 9781450370431.
doi: 10.1145/3368089.3409765. url: https://doi.org/10.1145/
3368089.3409765.

[3] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.
“Call graph construction for Java libraries”. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. FSE
2016. Seattle, WA, USA: Association for Computing Machinery, 2016, pp. 474–
486. isbn: 9781450342186. doi: 10.1145/2950290.2950312. url: https:
//doi.org/10.1145/2950290.2950312.

[4] Dominik Helm, Sven Keidel, Anemone Kampkötter, Johannes Düsing, Tobias Roth,
Ben Hermann, and Mira Mezini. “Total Recall? How Good Are Static Call Graphs
Really?” In: Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 112–123. url: https://dl.acm.org/doi/
proceedings/10.1145/3650212?tocHeading=heading1.

[5] Oracle. reflection in javadoc. url: https://www.oracle.com/technical-
resources/articles/java/javareflection.html.

[6] Oracle. polymorhism in javadoc. url: https://docs.oracle.com/javase/
tutorial/java/IandI/polymorphism.html.

39

https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/2950290.2950312
https://dl.acm.org/doi/proceedings/10.1145/3650212?tocHeading=heading1
https://dl.acm.org/doi/proceedings/10.1145/3650212?tocHeading=heading1
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html

[7] Barbara G. Ryder. Class Hierarchy Analysis: Lecture 3 Notes. url: https://
people.cs.vt.edu/~ryder/6304/lectures/ClassHierarchyAnalysis-
week3.pdf.

[8] Jeffrey Dean, David Grove, and Craig Chambers. “Optimization of object-oriented
programs using static class hierarchy”. In: Proceedings of 9th European Conference
on Object-oriented Programming (ECOOP’95), pp. 77–101.

[9] David F. Bacon and Peter F. Sweeney. Fast Static Analysis of C++ Virtual Function
Calls. url: https://people.cs.vt.edu/~ryder/6304/lectures/3-
Bacon-Sweeney-RTA-OOPSLA1996-MengWu.pdf.

[10] JavaQualitasCorpus. JavaQualitasCorpus Github. 2024. url: https://github.
com/JavaQualitasCorpus.

[11] qualitatscorpus. qualitatscorpus releases. url: qualitascorpus.com/docs/
catalogue/20130901/index.html.

[12] Li Sui Jens Dietrich Henrik Schole and Ewan Tempero. “XCorpus – An executable
Corpus of Java Programs”. In: Journal of Object Technology 16.4 (Aug. 2017), 1:1–
24. issn: 1660-1769. url: http://www.jot.fm/contents/issue_2017_
04/article1.html.

[13] OPAL: A Platform for Analyses of Java Bytecode. https://www.opal-project.
de/.

[14] Soot: A Framework for Analyzing and Transforming Java Programs. http://soot-
oss.github.io/soot/.

[15] Program Analysis Using WALA: IBM’s Watson Libraries for Analysis. https://
research.ibm.com/publications/program-analysis-using-wala.

[16] Doop: A Scalable and Precise Points-to Analysis Framework for Java. https://
plast-lab.github.io/doop-pldi15-tutorial/.

[17] AFL. AFL Repo. url: https://github.com/google/AFL.
[18] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.

“Directed Greybox Fuzzing”. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’17. Dallas, Texas, USA: Association
for Computing Machinery, 2017, pp. 2329–2344. isbn: 9781450349468. url:
https://doi.org/10.1145/3133956.3134020.

[19] Jazzer. jazzer Repo. url: https://github.com/CodeIntelligenceTesting/
jazzer.

40

https://people.cs.vt.edu/~ryder/6304/lectures/ClassHierarchyAnalysis-week3.pdf
https://people.cs.vt.edu/~ryder/6304/lectures/ClassHierarchyAnalysis-week3.pdf
https://people.cs.vt.edu/~ryder/6304/lectures/ClassHierarchyAnalysis-week3.pdf
https://people.cs.vt.edu/~ryder/6304/lectures/3-Bacon-Sweeney-RTA-OOPSLA1996-MengWu.pdf
https://people.cs.vt.edu/~ryder/6304/lectures/3-Bacon-Sweeney-RTA-OOPSLA1996-MengWu.pdf
https://github.com/JavaQualitasCorpus
https://github.com/JavaQualitasCorpus
qualitascorpus.com/docs/catalogue/20130901/index.html
qualitascorpus.com/docs/catalogue/20130901/index.html
http://www.jot.fm/contents/issue_2017_04/article1.html
http://www.jot.fm/contents/issue_2017_04/article1.html
https://www.opal-project.de/
https://www.opal-project.de/
http://soot-oss.github.io/soot/
http://soot-oss.github.io/soot/
https://research.ibm.com/publications/program-analysis-using-wala
https://research.ibm.com/publications/program-analysis-using-wala
https://plast-lab.github.io/doop-pldi15-tutorial/
https://plast-lab.github.io/doop-pldi15-tutorial/
https://github.com/google/AFL
https://doi.org/10.1145/3133956.3134020
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer

[20] Simone Romano and Giuseppe Scanniello. “Exploring the Use of Rapid Type Analysis
for Detecting the Dead Method Smell in Java Code”. In: 2018 44th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA). 2018, pp. 167–174.
doi: 10.1109/SEAA.2018.00035.

[21] Oracle. Make a Standalone Application. 2024. url: https://docs.oracle.
com/en/cloud/paas/app-container-cloud/dvcjv/make-standalone-
application.html.

[22] IBM Redbooks. Application Development for IBM WebSphere Process Server 7 and
Enterprise Service Bus 7. 2009. url: https://www.redbooks.ibm.com/
redbooks/pdfs/sg247177.pdf.

[23] Checkstyle-5.6 Sourceforge. Checkstyle. url: http://checkstyle.sourceforge.
net/.

[24] NakedObjects-4.0.0. Naked Objects. url: http://www.nakedobjects.org/.
[25] Eclipse SDK-3.7.1. Eclipse SDK. url: http://www.eclipse.org/.
[26] DrJava-Stable-20100913-r5387. DrJava. url: http://drjava.org/.
[27] NetBeans-7.3. NetBeans. url: http://netbeans.org/.
[28] Colt-1.2.0. Colt Project. url: http://dsd.lbl.gov/~hoschek/colt/.
[29] GeoTools 2-9.2. GeoTools. url: http://geotools.org/.
[30] JChemPaint-3.0.1. JChemPaint. url: http://sourceforge.net/projects/

cdk/.
[31] jFin DateMath-R1.0.1. jFin DateMath. url: https://sourceforge.net/

projects/jfin/.
[32] JPF-1.5.1. JPF Project. url: http://jpf.sourceforge.net/.
[33] Trove-2.1.0. Trove Project. url: https://sourceforge.net/projects/

trove4j/.
[34] Jext-5.0. Jext. url: http://sourceforge.net/projects/jext/.
[35] JUNG-2.0.1. JUNG Project. url: https://sourceforge.net/projects/

jung/.
[36] AspectJ-1.6.9. AspectJ Project. url: http://www.eclipse.org/aspectj/.
[37] JRE-1.6.0. Oracle. url: http://www.oracle.com/technetwork/java/

javase.
[38] JRuby-1.7.3. JRuby Project. url: http://www.jruby.org/.

41

https://doi.org/10.1109/SEAA.2018.00035
https://docs.oracle.com/en/cloud/paas/app-container-cloud/dvcjv/make-standalone-application.html
https://docs.oracle.com/en/cloud/paas/app-container-cloud/dvcjv/make-standalone-application.html
https://docs.oracle.com/en/cloud/paas/app-container-cloud/dvcjv/make-standalone-application.html
https://www.redbooks.ibm.com/redbooks/pdfs/sg247177.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg247177.pdf
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.nakedobjects.org/
http://www.eclipse.org/
http://drjava.org/
http://netbeans.org/
http://dsd.lbl.gov/~hoschek/colt/
http://geotools.org/
http://sourceforge.net/projects/cdk/
http://sourceforge.net/projects/cdk/
https://sourceforge.net/projects/jfin/
https://sourceforge.net/projects/jfin/
http://jpf.sourceforge.net/
https://sourceforge.net/projects/trove4j/
https://sourceforge.net/projects/trove4j/
http://sourceforge.net/projects/jext/
https://sourceforge.net/projects/jung/
https://sourceforge.net/projects/jung/
http://www.eclipse.org/aspectj/
http://www.oracle.com/technetwork/java/javase
http://www.oracle.com/technetwork/java/javase
http://www.jruby.org/

[39] Azureus-4.7.0.2. Azureus Project. url: http://sourceforge.net/projects/
azureus/files/.

[40] C-JDBC-2.0.2. C-JDBC Project. url: https://c-jdbc.ow2.org/current/
doc/api/org/objectweb/cjdbc/driver/Driver.html.

[41] Hibernate-4.2.0. Hibernate Project. url: http://www.hibernate.org/.
[42] Cayenne-3.0.1. Cayenne Project. url: http://cayenne.apache.org/.
[43] HSQLDB-2.0.0. HSQLDB Project. url: http://hsqldb.org/.
[44] Derby-10.9.1.0. Derby Project. url: http://db.apache.org/derby/.
[45] SQuirreL SQL-3.1.2. SQuirreL SQL Project. url: http : / / squirrel - sql .

sourceforge.net/.
[46] FreeCol-0.10.3. FreeCol Project. url: http://www.freecol.org/.
[47] Marauroa-3.8.1. Marauroa Project. url: http://arianne.sourceforge.

net/.
[48] MegaMek-0.35.18. MegaMek Project. url: http://megamek.sourceforge.

net/.
[49] AOI-2.8.1. Art of Illusion. url: http://www.artofillusion.org/.
[50] DrawSWF-1.2.9. DrawSWF Project. url: http://drawswf.sourceforge.

net/.
[51] Galleon-2.3.0. Galleon Project. url: http://galleon.sourceforge.net/

index.php.
[52] JHotDraw-7.5.1. JHotDraw Project. url: http://sourceforge.net/projects/

jhotdraw/.
[53] Sunflow-0.07.2. Sunflow Project. url: http://sunflow.sourceforge.net/.
[54] JOGG Player-1.1.4s. JOGG Player. url: http://joggplayer.webarts.bc.

ca/.
[55] stg-tu-darmstadt. total-recall. url: https://github.com/stg-tud/total-

recall.
[56] JavaCC-5.0. JavaCC Project. url: https://sourceforge.net/projects/

eclipse-javacc/.
[57] ANTLR-3.4. ANTLR Project. url: http://www.antlr.org/.
[58] JParse-0.96. JParse Project. url: https://github.com/JavaQualitasCorpus/

jparse-0.96.

42

http://sourceforge.net/projects/azureus/files/
http://sourceforge.net/projects/azureus/files/
https://c-jdbc.ow2.org/current/doc/api/org/objectweb/cjdbc/driver/Driver.html
https://c-jdbc.ow2.org/current/doc/api/org/objectweb/cjdbc/driver/Driver.html
http://www.hibernate.org/
http://cayenne.apache.org/
http://hsqldb.org/
http://db.apache.org/derby/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://www.freecol.org/
http://arianne.sourceforge.net/
http://arianne.sourceforge.net/
http://megamek.sourceforge.net/
http://megamek.sourceforge.net/
http://www.artofillusion.org/
http://drawswf.sourceforge.net/
http://drawswf.sourceforge.net/
http://galleon.sourceforge.net/index.php
http://galleon.sourceforge.net/index.php
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sunflow.sourceforge.net/
http://joggplayer.webarts.bc.ca/
http://joggplayer.webarts.bc.ca/
https://github.com/stg-tud/total-recall
https://github.com/stg-tud/total-recall
https://sourceforge.net/projects/eclipse-javacc/
https://sourceforge.net/projects/eclipse-javacc/
http://www.antlr.org/
https://github.com/JavaQualitasCorpus/jparse-0.96
https://github.com/JavaQualitasCorpus/jparse-0.96

[59] SableCC-3.2. SableCC Project. url: http://sablecc.org/.
[60] NekoHTML-1.9.14. NekoHTML Project. url: http://nekohtml.sourceforge.

net/.
[61] Cobertura-1.9.4.1. Cobertura Project. url: http://cobertura.sourceforge.

net/.
[62] EMMA-2.0.5312. EMMA Project. url: http://emma.sourceforge.net/.
[63] FindBugs-1.3.9. FindBugs Project. url: http://findbugs.sourceforge.

net/.
[64] FitJava-1.1. FitJava. url: http://fit.c2.com/.
[65] FitLibrary for FitNesse-20100806. FitLibrary for FitNesse Project. url: http://

sourceforge.net/projects/fitlibrary/.
[66] JMeter-2.5.1. JMeter Project. url: http://jakarta.apache.org/jmeter/.
[67] JRat-Beta1. JRat Project. url: http://jrat.sourceforge.net/.
[68] JUnit-4.10. JUnit Project. url: http://junit.org/.
[69] Log4j-2.0 Beta. Log4j Project. url: http://logging.apache.org/log4j/1.

2/.
[70] PMD-4.2.5. PMD Project. url: http://pmd.sourceforge.net/.
[71] Quilt-0.6-a-5. Quilt Project. url: http://quilt.sourceforge.net/.
[72] HtmlUnit-2.8. HtmlUnit Project. url: http://htmlunit.sourceforge.net/.
[73] Castor-1.3.1. Castor Project. url: https://sourceforge.net/p/xdoclipse/

news/.
[74] Struts-2.2.1. Struts Project. url: http://struts.apache.org/index.html.
[75] Tapestry-5.1.0.5. Tapestry Project. url: http://tapestry.apache.org/.
[76] Spring Framework-3.0.5. Spring Framework Project. url: http://www.springsource.

org/.
[77] MyFaces Core-2.1.1.0. MyFaces Core Project. url: http://myfaces.apache.

org/.
[78] Tomcat-7.0.2. Tomcat Project. url: http://tomcat.apache.org/.
[79] JBoss-5.1.0. JBoss Project. url: http://www.jboss.org/jbossas.
[80] OSCache-2.3. OSCache Project. url: https://mvnrepository.com/artifact/

opensymphony/oscache/2.3.

43

http://sablecc.org/
http://nekohtml.sourceforge.net/
http://nekohtml.sourceforge.net/
http://cobertura.sourceforge.net/
http://cobertura.sourceforge.net/
http://emma.sourceforge.net/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://fit.c2.com/
http://sourceforge.net/projects/fitlibrary/
http://sourceforge.net/projects/fitlibrary/
http://jakarta.apache.org/jmeter/
http://jrat.sourceforge.net/
http://junit.org/
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://pmd.sourceforge.net/
http://quilt.sourceforge.net/
http://htmlunit.sourceforge.net/
https://sourceforge.net/p/xdoclipse/news/
https://sourceforge.net/p/xdoclipse/news/
http://struts.apache.org/index.html
http://tapestry.apache.org/
http://www.springsource.org/
http://www.springsource.org/
http://myfaces.apache.org/
http://myfaces.apache.org/
http://tomcat.apache.org/
http://www.jboss.org/jbossas
https://mvnrepository.com/artifact/opensymphony/oscache/2.3
https://mvnrepository.com/artifact/opensymphony/oscache/2.3

[81] Collections-3.2.1. Apache Commons. url: http://commons.apache.org/
collections.

[82] Columba-1.0. Columba Project. url: http://sourceforge.net/projects/
columba.

[83] Compiere-330. Compiere Project. url: http://www.compiere.com/.
[84] Freecs-1.3.20100406. Freecs Project. url: http://freecs.sourceforge.

net/.
[85] ProGuard-4.9. ProGuard Project. url: http://proguard.sourceforge.

net/.
[86] Sandmark-3.4. Sandmark Project. url: https://gitee.com/mirrors_

JavaQualitasCorpus/sandmark-3.4.
[87] Pooka-3.0-080505. Pooka Project. url: http://www.suberic.net/pooka/.
[88] Weka-3.6.9. Weka Project. url: http://www.cs.waikato.ac.nz/~ml/weka.
[89] Heritrix-1.14.4. Heritrix Project. url: https://sourceforge.net/projects/

archive-crawler/files/archive-crawler%20(heritrix%201.x)/1.
14.4/.

[90] James-2.2.0. James Project. url: http://james.apache.org/.
[91] Jag-6.1. Jag Project. url: http://jag.sourceforge.net/.
[92] JEdit-4.3.2. JEdit Project. url: http://www.jedit.org/.
[93] JGraph-1.0.13. JGraph Project. url: http://sourceforge.net/projects/

jgraph.
[94] JGraphPad-5.10.0.2. JGraphPad Project. url: http://www.jgraph.com/.
[95] JGraphT-0.8.1. JGraphT Project. url: http://jgrapht.sourceforge.net/.
[96] JaoCoCo Website. url: https://www.eclemma.org/jacoco/.
[97] Richard Feynman and Chapter Objectives. “Ebnf: A notation to describe syntax”.

In: Cited on 10 (2016).
[98] Daniel D. McCracken and Edwin D. Reilly. “Backus-Naur form (BNF)”. In: Ency-

clopedia of Computer Science. GBR: John Wiley and Sons Ltd., 2003, pp. 129–131.
isbn: 0470864125.

44

http://commons.apache.org/collections
http://commons.apache.org/collections
http://sourceforge.net/projects/columba
http://sourceforge.net/projects/columba
http://www.compiere.com/
http://freecs.sourceforge.net/
http://freecs.sourceforge.net/
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
https://gitee.com/mirrors_JavaQualitasCorpus/sandmark-3.4
https://gitee.com/mirrors_JavaQualitasCorpus/sandmark-3.4
http://www.suberic.net/pooka/
http://www.cs.waikato.ac.nz/~ml/weka
https://sourceforge.net/projects/archive-crawler/files/archive-crawler%20(heritrix%201.x)/1.14.4/
https://sourceforge.net/projects/archive-crawler/files/archive-crawler%20(heritrix%201.x)/1.14.4/
https://sourceforge.net/projects/archive-crawler/files/archive-crawler%20(heritrix%201.x)/1.14.4/
http://james.apache.org/
http://jag.sourceforge.net/
http://www.jedit.org/
http://sourceforge.net/projects/jgraph
http://sourceforge.net/projects/jgraph
http://www.jgraph.com/
http://jgrapht.sourceforge.net/
https://www.eclemma.org/jacoco/

Appendices

According to [11]

45

Table 6.1: List of JavaQualitasCorpus Projects and their GitHub Links
Project Name Release Year GitHub Link

aoi-2.8.1 https://github.com/JavaQualitasCorpus/aoi-
2.8.1

ant-1.8.2 https://github.com/JavaQualitasCorpus/ant-
1.8.2

antlr-3.4 https://github.com/JavaQualitasCorpus/antlr-
3.4

argouml-0.34 https://github.com/JavaQualitasCorpus/argouml-
0.34

aspectj-1.6.9 https://github.com/JavaQualitasCorpus/aspectj-
1.6.9

axion-1.0-M2 https://github.com/JavaQualitasCorpus/axion-
1.0-M2

azureus-4.7.0.2 https://github.com/JavaQualitasCorpus/azureus-
4.7.0.2

batik-1.7 https://github.com/JavaQualitasCorpus/batik-
1.7

castor-1.3.3 https://github.com/JavaQualitasCorpus/castor-
1.3.3

cayenne-3.0.1 https://github.com/JavaQualitasCorpus/cayenne-
3.0.1

checkstyle-5.6 https://github.com/JavaQualitasCorpus/checkstyle-
5.6

c_jdbc-2.0.2 https://github.com/JavaQualitasCorpus/c_jdbc-
2.0.2

cobertura-1.9.4.1 https://github.com/JavaQualitasCorpus/cobertura-
1.9.4.1

collections-3.2.1 https://github.com/JavaQualitasCorpus/collections-
3.2.1

colt-1.2.0 https://github.com/JavaQualitasCorpus/colt-
1.2.0

columba-1.0 https://github.com/JavaQualitasCorpus/columba-
1.0

Continued on next page

46

Project Name GitHub Link

compiere-330 https://github.com/JavaQualitasCorpus/compiere-
330

derby-10.9.1.0 https://github.com/JavaQualitasCorpus/derby-
10.9.1.0

displaytag-1.2 https://github.com/JavaQualitasCorpus/displaytag-
1.2

drawswf-1.2.9 https://github.com/JavaQualitasCorpus/drawswf-
1.2.9

drjava-stable-20100913-r5387 https://github.com/JavaQualitasCorpus/drjava-
stable-20100913-r5387

eclipse_SDK-3.7.1 https://github.com/JavaQualitasCorpus/e-
clipse_SDK-3.7.1

emma-2.0.5312 https://github.com/JavaQualitasCorpus/emma-
2.0.5312

exoportal-v1.0.2 https://github.com/JavaQualitasCorpus/exoportal-
v1.0.2

findbugs-1.3.9 https://github.com/JavaQualitasCorpus/findbugs-
1.3.9

fitjava-1.1 https://github.com/JavaQualitasCorpus/fitjava-
1.1

fitlibraryforfitnesse-20110301 https://github.com/JavaQualitasCorpus/fitlibraryforfitnesse-
20110301

freecol-0.10.3 https://github.com/JavaQualitasCorpus/freecol-
0.10.3

freecs-1.3.20100406 https://github.com/JavaQualitasCorpus/freecs-
1.3.20100406

freemind-0.9.0 https://github.com/JavaQualitasCorpus/freemind-
0.9.0

galleon-2.3.0 https://github.com/JavaQualitasCorpus/galleon-
2.3.0

ganttproject-2.1.1 https://github.com/JavaQualitasCorpus/ganttproject-
2.1.1

geotools-9.2 https://github.com/JavaQualitasCorpus/geotools-
9.2

Continued on next page

47

Project Name GitHub Link

hadoop-1.1.2 https://github.com/JavaQualitasCorpus/hadoop-
1.1.2

heritrix-1.14.4 https://github.com/JavaQualitasCorpus/heritrix-
1.14.4

hibernate-4.2.0 https://github.com/JavaQualitasCorpus/hibernate-
4.2.0

hsqldb-2.0.0 https://github.com/JavaQualitasCorpus/hsqldb-
2.0.0

htmlunit-2.8 https://github.com/JavaQualitasCorpus/htmlunit-
2.8

informa-0.7.0-alpha2 https://github.com/JavaQualitasCorpus/informa-
0.7.0-alpha2

iReport-3.7.5 https://github.com/JavaQualitasCorpus/iReport-
3.7.5

itext-5.0.3 https://github.com/JavaQualitasCorpus/itext-
5.0.3

ivatagroupware-0.11.3 https://github.com/JavaQualitasCorpus/ivatagroupware-
0.11.3

jag-6.1 https://github.com/JavaQualitasCorpus/jag-6.1
james-2.2.0 https://github.com/JavaQualitasCorpus/james-

2.2.0
jasml-0.10 https://github.com/JavaQualitasCorpus/jasml-

0.10
jasperreports-3.7.4 https://github.com/JavaQualitasCorpus/jasperreports-

3.7.4
javacc-5.0 https://github.com/JavaQualitasCorpus/javacc-

5.0
jboss-5.1.0 https://github.com/JavaQualitasCorpus/jboss-

5.1.0
jchempaint-3.0.1 https://github.com/JavaQualitasCorpus/jchempaint-

3.0.1
jedit-4.3.2 https://github.com/JavaQualitasCorpus/jedit-

4.3.2

Continued on next page

48

Project Name GitHub Link

jena-2.6.3 https://github.com/JavaQualitasCorpus/jena-
2.6.3

jext-5.0 https://github.com/JavaQualitasCorpus/jext-5.0
jFin_DateMath-R1.0.1 https://github.com/JavaQualitasCor-

pus/jFin_DateMath-R1.0.1
jfreechart-1.0.13 https://github.com/JavaQualitasCorpus/jfreechart-

1.0.13
jgraph-5.13.0.0 https://github.com/JavaQualitasCorpus/jgraph-

5.13.0.0
jgraphpad-5.10.0.2 https://github.com/JavaQualitasCorpus/jgraphpad-

5.10.0.2
jgrapht-0.8.1 https://github.com/JavaQualitasCorpus/jgrapht-

0.8.1
jgroups-2.10.0 https://github.com/JavaQualitasCorpus/jgroups-

2.10.0
jhotdraw-7.5.1 https://github.com/JavaQualitasCorpus/jhotdraw-

7.5.1
jmeter-2.5.1 https://github.com/JavaQualitasCorpus/jmeter-

2.5.1
jmoney-0.4.4 https://github.com/JavaQualitasCorpus/jmoney-

0.4.4
joggplayer-1.1.4s https://github.com/JavaQualitasCorpus/joggplayer-

1.1.4s
jparse-0.96 https://github.com/JavaQualitasCorpus/jparse-

0.96
jpf-1.5.1 https://github.com/JavaQualitasCorpus/jpf-

1.5.1
jrat-1-beta1 https://github.com/JavaQualitasCorpus/jrat-1-

beta1
jre-1.6.0 https://github.com/JavaQualitasCorpus/jre-

1.6.0
jrefactory-2.9.19 https://github.com/JavaQualitasCorpus/jrefactory-

2.9.19

Continued on next page

49

Project Name GitHub Link

jruby-1.7.3 https://github.com/JavaQualitasCorpus/jruby-
1.7.3

jspwiki-2.8.4 https://github.com/JavaQualitasCorpus/jspwiki-
2.8.4

jsXe-04_beta https://github.com/JavaQualitasCorpus/jsXe-
04_beta

jtopen-7.8 https://github.com/JavaQualitasCorpus/jtopen-
7.8

jung-2.0.1 https://github.com/JavaQualitasCorpus/jung-
2.0.1

junit-4.10 https://github.com/JavaQualitasCorpus/junit-
4.10

log4j-2.0-beta https://github.com/JavaQualitasCorpus/log4j-
2.0-beta

lucene-4.2.0 https://github.com/JavaQualitasCorpus/lucene-
4.2.0

marauroa-3.8.1 https://github.com/JavaQualitasCorpus/marauroa-
3.8.1

maven-3.0.5 https://github.com/JavaQualitasCorpus/maven-
3.0.5

megamek-0.35.18 https://github.com/JavaQualitasCorpus/megamek-
0.35.18

mvnforum-1.2.2-ga https://github.com/JavaQualitasCorpus/mvnforum-
1.2.2-ga

myfaces_core-2.1.10 https://github.com/JavaQualitasCorpus/my-
faces_core-2.1.10

nakedobjects-4.0.0 https://github.com/JavaQualitasCorpus/nakedobjects-
4.0.0

nekohtml-1.9.14 https://github.com/JavaQualitasCorpus/nekohtml-
1.9.14

netbeans-7.3 https://github.com/JavaQualitasCorpus/netbeans-
7.3

openjms-0.7.7-beta-1 https://github.com/JavaQualitasCorpus/openjms-
0.7.7-beta-1

Continued on next page

50

Project Name GitHub Link

oscache-2.3 https://github.com/JavaQualitasCorpus/oscache-
2.3

picocontainer-2.10.2 https://github.com/JavaQualitasCorpus/picocontainer-
2.10.2

pmd-4.2.5 https://github.com/JavaQualitasCorpus/pmd-
4.2.5

poi-3.6 https://github.com/JavaQualitasCorpus/poi-3.6
pooka-3.0-080505 https://github.com/JavaQualitasCorpus/pooka-

3.0-080505
proguard-4.9 https://github.com/JavaQualitasCorpus/proguard-

4.9
quartz-1.8.3 https://github.com/JavaQualitasCorpus/quartz-

1.8.3
quickserver-1.4.7 https://github.com/JavaQualitasCorpus/quickserver-

1.4.7
quilt-0.6-a-5 https://github.com/JavaQualitasCorpus/quilt-

0.6-a-5
roller-5.0.1 https://github.com/JavaQualitasCorpus/roller-

5.0.1
rssowl-2.0.5 https://github.com/JavaQualitasCorpus/rssowl-

2.0.5
sablecc-3.2 https://github.com/JavaQualitasCorpus/sablecc-

3.2
sandmark-3.4 https://github.com/JavaQualitasCorpus/sandmark-

3.4
springframework-3.0.5 https://github.com/JavaQualitasCorpus/springframework-

3.0.5
squirrel_sql-3.1.2 https://github.com/JavaQualitasCorpus/squir-

rel_sql-3.1.2
struts-2.2.1 https://github.com/JavaQualitasCorpus/struts-

2.2.1
sunflow-0.07.2 https://github.com/JavaQualitasCorpus/sunflow-

0.07.2

Continued on next page

51

Project Name GitHub Link

tapestry-5.1.0.5 https://github.com/JavaQualitasCorpus/tapestry-
5.1.0.5

tomcat-7.0.2 https://github.com/JavaQualitasCorpus/tomcat-
7.0.2

trove-2.1.0 https://github.com/JavaQualitasCorpus/trove-
2.1.0

velocity-1.6.4 https://github.com/JavaQualitasCorpus/velocity-
1.6.4

wct-1.5.2 https://github.com/JavaQualitasCorpus/wct-
1.5.2

webmail-0.7.10 https://github.com/JavaQualitasCorpus/webmail-
0.7.10

weka-3-6-9 https://github.com/JavaQualitasCorpus/weka-3-
6-9

xalan-2.7.1 https://github.com/JavaQualitasCorpus/xalan-
2.7.1

xerces-2.10.0 https://github.com/JavaQualitasCorpus/xerces-
2.10.0

xmojo-5.0.0 https://github.com/JavaQualitasCorpus/xmojo-
5.0.0

ant https://github.com/JavaQualitasCorpus/ant
cassandra https://github.com/JavaQualitasCorpus/cassan-

dra
eclipse.jdt.core https://github.com/JavaQualitasCorpus/e-

clipse.jdt.core
hsqldb https://github.com/JavaQualitasCorpus/hsqldb
xerces2-j https://github.com/JavaQualitasCorpus/x-

erces2-j

Version Link

ant-1.8.2 http://ant.apache.org/
antlr-3.4 http://www.antlr.org/
aoi-2.8.1 http://www.artofillusion.org/
argouml-0.34 http://argouml.tigris.org/

52

http://ant.apache.org/
http://www.antlr.org/
http://www.artofillusion.org/
http://argouml.tigris.org/

aspectj-1.6.9 http://www.eclipse.org/aspectj/
axion-1.0-M2 http://axion.tigris.org/
azureus-4.7.0.2 http://sourceforge.net/projects/azureus/files/
batik-1.7 http://xmlgraphics.apache.org/batik
c_jdbc-2.0.2 http://c-jdbc.objectweb.org/
castor-1.3.3 http://castor.codehaus.org/
cayenne-3.0.1 http://cayenne.apache.org/
checkstyle-5.6 http://checkstyle.sourceforge.net/
cobertura-1.9.4.1 http://cobertura.sourceforge.net/
collections-3.2.1 http://commons.apache.org/collections
colt-1.2.0 http://dsd.lbl.gov/~hoschek/colt/
columba-1.0 http://sourceforge.net/projects/columba
compiere-330 http://www.compiere.com/
derby-10.9.1.0 http://db.apache.org/derby/
displaytag-1.2 http://displaytag.sourceforge.net/
drawswf-1.2.9 http://drawswf.sourceforge.net/
drjava-stable-20100913-r5387 http://drjava.org/
eclipse_SDK-3.7.1 http://www.eclipse.org/
emma-2.0.5312 http://emma.sourceforge.net/
exoportal-v1.0.2 http://exo.sourceforge.net/
findbugs-1.3.9 http://findbugs.sourceforge.net/
fitjava-1.1 http://fit.c2.com/
fitlibraryforfitnesse-20110301 http://sourceforge.net/projects/fitlibrary/
freecol-0.10.3 http://www.freecol.org/
freecs-1.3.20100406 http://freecs.sourceforge.net/
freemind-0.9.0 http://freemind.sourceforge.net/
galleon-2.3.0 http://galleon.sourceforge.net/index.php
ganttproject-2.1.1 http://www.ganttproject.biz/
geotools-9.2 http://geotools.org/
hadoop-1.1.2 http://hadoop.apache.org/common
heritrix-1.14.4 http://crawler.archive.org/
hibernate-4.2.0 http://www.hibernate.org/
hsqldb-2.0.0 http://hsqldb.org/
htmlunit-2.8 http://htmlunit.sourceforge.net/
informa-0.7.0-alpha2 http://informa.sourceforge.net/
iReport-3.7.5 http://sourceforge.net/projects/ireport
itext-5.0.3 http://www.itextpdf.com/
ivatagroupware-0.11.3 http://sourceforge.net/projects/ivataopenportal/

53

http://www.eclipse.org/aspectj/
http://axion.tigris.org/
http://sourceforge.net/projects/azureus/files/
http://xmlgraphics.apache.org/batik
http://c-jdbc.objectweb.org/
http://castor.codehaus.org/
http://cayenne.apache.org/
http://checkstyle.sourceforge.net/
http://cobertura.sourceforge.net/
http://commons.apache.org/collections
http://dsd.lbl.gov/~hoschek/colt/
http://sourceforge.net/projects/columba
http://www.compiere.com/
http://db.apache.org/derby/
http://displaytag.sourceforge.net/
http://drawswf.sourceforge.net/
http://drjava.org/
http://www.eclipse.org/
http://emma.sourceforge.net/
http://exo.sourceforge.net/
http://findbugs.sourceforge.net/
http://fit.c2.com/
http://sourceforge.net/projects/fitlibrary/
http://www.freecol.org/
http://freecs.sourceforge.net/
http://freemind.sourceforge.net/
http://galleon.sourceforge.net/index.php
http://www.ganttproject.biz/
http://geotools.org/
http://hadoop.apache.org/common
http://crawler.archive.org/
http://www.hibernate.org/
http://hsqldb.org/
http://htmlunit.sourceforge.net/
http://informa.sourceforge.net/
http://sourceforge.net/projects/ireport
http://www.itextpdf.com/
http://sourceforge.net/projects/ivataopenportal/

jFin_DateMath-R1.0.1 http://jfin.org/
jag-6.1 http://jag.sourceforge.net/
james-2.2.0 http://james.apache.org/
jasml-0.10 http://jasml.sourceforge.net/
jasperreports-3.7.4 http://www.jasperforge.org/
javacc-5.0 https://javacc.dev.java.net/
jboss-5.1.0 http://www.jboss.org/jbossas
jchempaint-3.0.1 http://sourceforge.net/projects/cdk/
jedit-4.3.2 http://www.jedit.org/
jena-2.6.3 http://jena.sourceforge.net/
jext-5.0 http://sourceforge.net/projects/jext/
jfreechart-1.0.13 http://www.jfree.org/jfreechart/
jgraph-5.13.0.0 http://sourceforge.net/projects/jgraph
jgraphpad-5.10.0.2 http://www.jgraph.com/
jgrapht-0.8.1 http://jgrapht.sourceforge.net/
jgroups-2.10.0 http://www.jgroups.org/index.html
jhotdraw-7.5.1 http://sourceforge.net/projects/jhotdraw/
jmeter-2.5.1 http://jakarta.apache.org/jmeter/
jmoney-0.4.4 http://jmoney.sourceforge.net/
joggplayer-1.1.4s http://joggplayer.webarts.bc.ca/
jparse-0.96 http://www.ittc.ku.edu/JParse/
jpf-1.5.1 http://jpf.sourceforge.net/
jrat-1-beta1 http://jrat.sourceforge.net/
jre-1.6.0 http://www.oracle.com/technetwork/java/javase
jrefactory-2.9.19 http://sourceforge.net/projects/jrefactory/
jruby-1.7.3 http://www.jruby.org/
jsXe-04_beta http://jsxe.sourceforge.net/
jspwiki-2.8.4 http://www.jspwiki.org/
jstock-1.0.7c http://jstock.sourceforge.net/
jtopen-7.8 http://jt400.sourceforge.net/
jung-2.0.1 https://sourceforge.net/projects/jung/
junit-4.10 http://junit.org/
log4j-2.0-beta http://logging.apache.org/log4j/1.2/
lucene-4.2.0 http://lucene.apache.org/
marauroa-3.8.1 http://arianne.sourceforge.net/
maven-3.0.5 http://maven.apache.org/
megamek-0.35.18 http://megamek.sourceforge.net/
mvnforum-1.2.2-ga http://www.mvnforum.com/mvnforumweb/index.jsp

54

http://jfin.org/
http://jag.sourceforge.net/
http://james.apache.org/
http://jasml.sourceforge.net/
http://www.jasperforge.org/
https://javacc.dev.java.net/
http://www.jboss.org/jbossas
http://sourceforge.net/projects/cdk/
http://www.jedit.org/
http://jena.sourceforge.net/
http://sourceforge.net/projects/jext/
http://www.jfree.org/jfreechart/
http://sourceforge.net/projects/jgraph
http://www.jgraph.com/
http://jgrapht.sourceforge.net/
http://www.jgroups.org/index.html
http://sourceforge.net/projects/jhotdraw/
http://jakarta.apache.org/jmeter/
http://jmoney.sourceforge.net/
http://joggplayer.webarts.bc.ca/
http://www.ittc.ku.edu/JParse/
http://jpf.sourceforge.net/
http://jrat.sourceforge.net/
http://www.oracle.com/technetwork/java/javase
http://sourceforge.net/projects/jrefactory/
http://www.jruby.org/
http://jsxe.sourceforge.net/
http://www.jspwiki.org/
http://jstock.sourceforge.net/
http://jt400.sourceforge.net/
https://sourceforge.net/projects/jung/
http://junit.org/
http://logging.apache.org/log4j/1.2/
http://lucene.apache.org/
http://arianne.sourceforge.net/
http://maven.apache.org/
http://megamek.sourceforge.net/
http://www.mvnforum.com/mvnforumweb/index.jsp

myfaces_core-2.1.10 http://myfaces.apache.org/
nakedobjects-4.0.0 http://www.nakedobjects.org/
nekohtml-1.9.14 http://nekohtml.sourceforge.net/
netbeans-7.3 http://netbeans.org/
openjms-0.7.7-beta-1 http://sourceforge.net/projects/openjms/
oscache-2.3 http://www.opensymphony.com/oscache
picocontainer-2.10.2 http://www.picocontainer.org/
pmd-4.2.5 http://pmd.sourceforge.net/
poi-3.6 http://poi.apache.org/
pooka-3.0-080505 http://www.suberic.net/pooka/
proguard-4.9 http://proguard.sourceforge.net/
quartz-1.8.3 http://quartz-scheduler.org/
quickserver-1.4.7 http://www.quickserver.org/
quilt-0.6-a-5 http://quilt.sourceforge.net/
roller-5.0.1 http://roller.apache.org/
rssowl-2.0.5 http://www.rssowl.org/
sablecc-3.2 http://sablecc.org/
sandmark-3.4 http://www.cs.arizona.edu/sandmark
springframework-3.0.5 http://www.springsource.org/
squirrel_sql-3.1.2 http://squirrel-sql.sourceforge.net/
struts-2.2.1 http://struts.apache.org/index.html
sunflow-0.07.2 http://sunflow.sourceforge.net/
tapestry-5.1.0.5 http://tapestry.apache.org/
tomcat-7.0.2 http://tomcat.apache.org/
trove-2.1.0 http://trove4j.sourceforge.net/
velocity-1.6.4 http://velocity.apache.org/
wct-1.5.2 http://webcurator.sourceforge.net/
webmail-0.7.10 http://jwebmail.sourceforge.net/
weka-3-6-9 http://www.cs.waikato.ac.nz/~ml/weka
xalan-2.7.1 http://xml.apache.org/xalan-j/
xerces-2.10.0 http://xerces.apache.org/
xmojo-5.0.0 http://www.xmojo.org/

55

http://myfaces.apache.org/
http://www.nakedobjects.org/
http://nekohtml.sourceforge.net/
http://netbeans.org/
http://sourceforge.net/projects/openjms/
http://www.opensymphony.com/oscache
http://www.picocontainer.org/
http://pmd.sourceforge.net/
http://poi.apache.org/
http://www.suberic.net/pooka/
http://proguard.sourceforge.net/
http://quartz-scheduler.org/
http://www.quickserver.org/
http://quilt.sourceforge.net/
http://roller.apache.org/
http://www.rssowl.org/
http://sablecc.org/
http://www.cs.arizona.edu/sandmark
http://www.springsource.org/
http://squirrel-sql.sourceforge.net/
http://struts.apache.org/index.html
http://sunflow.sourceforge.net/
http://tapestry.apache.org/
http://tomcat.apache.org/
http://trove4j.sourceforge.net/
http://velocity.apache.org/
http://webcurator.sourceforge.net/
http://jwebmail.sourceforge.net/
http://www.cs.waikato.ac.nz/~ml/weka
http://xml.apache.org/xalan-j/
http://xerces.apache.org/
http://www.xmojo.org/

56

	Abstract
	Introduction
	Methodology and Related Work
	Input Program
	Input Corpus and Fuzzing
	Static Analysis and Dynamically Sampled CG
	Evaluation

	Survey of Corpus
	Excluded Programs
	IDE
	SDK
	Diagram Generator and Data Visualization
	Programming Language
	Database
	Games
	3D, Graphics and Media
	Parsers, Generator and Make
	Testing
	Middleware
	Tool
	Conclusion
	Limitations

	Case Study
	Testing Environment
	Analysed Program
	Entrypoint
	Fuzzer class
	Docker File
	Fuzzing Corpus
	Program Coverages
	Conclusion

	Future Works
	Conclusion
	Acronyms
	Appendices

