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Abstract

Abstract interpretation is a way of approximating the semantics of a computer pro-
gram, in which we derive properties of those programs without actually performing the
necessary computations for running the program, though the use of an abstract inter-
preter. To be able to trust the result of the abstract interpretation, we would to able to
prove the soundness of the approximations of the interpreter. Previous work by Kei-
del et al. has shown that the soundness proofs of an entire abstract interpreter can be
simplified by decomposing the interpreter by implementing concrete and abstract inter-
preters as instantiations of a generic interpreter. The goal of this thesis is to explore and
implement mechanical proofs of soundness of such interpreters. To this end, we have
used the interactive proof assistant Coq to implement a generic interpeter for a simple
imperative language and instantiate it both concrete and abstract versions. The abstract
interpreter is automatically proven sound via the use of Coq’s automatic proof capabili-
ties and typeclass system. Both the interpreted language and the used abstractions can
be expanded to allow for more features. Soundness proofs can then be written for just
the new components, those proofs will then be automatically resolved by Coq.
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Chapter 1

Introduction

1.1 Approaches to software verification
Software engineering is a complex discipline. While developing, it is easy to lose sight of
what the code actually does and over time the difference betweenwhat a developer intended
and what a developer actually created will only grow. Many tools and techniques exist to
mitigate this problem and help developers establish faith in their code.

One common approach to software testing is to write small tests that verify a single unit
of a program, such as a single function or a class. The program can be run on a diverse set
of inputs and the results verified by a testing library.

Such traditional testing approaches run the system under test to find errors. However,
often programs can be run on an infinite input space and it is only feasible to write tests that
are run on a finite subset of the input space. In contrast, static code analyzers can look at the
source code of a program to see if the code will perform as expected by generalizing over
values that the program works with. In this thesis, we will consider these static analyzers.

1.2 Static analysis
A static analyzer that identifies all problems in an analyzed program is said to be sound.
The ability to report these problems without reporting false negatives is called precision.
Different users of static analysis may place different demands on the performance of the
analyzer. Facebook is developing a static analyzer called INFER that places an emphasis on
precision and fast reporting speed (Calcagno et al. 2015). For Facebook, it is important that
the time of their developers is not spent investigating false negatives (i.e. the analyzer reports
a non-existing bug) or waiting for the analysis to be complete.

On the other hand, compilers use static analysis to ensure that they can perform certain
optimizations. If a compiler performs an optimization such as in-lining the result of an if
statement based on the result of an unsound analysis, this can result in miscompilations. De-
velopers tend to assume their compilers work correctly, so bugs in the compiler go unnoticed
or are only found after much time has been spent debugging the input program. Therefore,
compilers place a much higher emphasis on soundness.

There exist many kinds of static code analysis. The field is broad, as it refers to any kind of
tool that inspects source code. One type of static code analysis is taint analysis, which seeks
to find security bugs in a program. User input is often a source of security breaches, as amali-
cious user could input data that is specially crafted to exploit such a breach. A taint analyzer
considers all user input as tainted and tracks the flow of tainted data through the program.
Tainted data must be sanitized before it can be used in a high security context. An example
of such sanitization is clearing illegal character from a submitted username and password to
prevent an SQL injection attack. Another use of static analysis is a type checker. Type check-
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1. INTRODUCTION

ers are used in the compilers of many languages and assure that the provided program is
well-typed, which means that all operations are used on types that support those operations.
Addition is performed on numbers and boolean logic is only performed on booleans, etcetera.

Abstract interpretation is method of doing static analysis by abstracting over the prop-
erties of values in a program, such as parity or the sign of numbers. Research into abstract
interpretation started in the 1970s by P. Cousot and R. Cousot (1977). They showed how
reasoning over abstract properties could be used to perform program analysis, despite the
resulting abstractions being imprecise. A few years later, they build upon their work to de-
fine a generic framework to capture the programflowusing abstract interpretation (P. Cousot
and R. Cousot 1979). Cousot then provided a method for designing an abstract interpreter
based on a provided concrete interpreter (P. Cousot 1999). Using Galois connections, which
model the relationship between concrete and abstract values, they showed that it is possible
to calculate a sound abstract interpreter in what they called the calculational approach.

Proving that static analyzers are sound is a daunting task. Writing a proof manually is
a long and cumbersome process. The writer of the proof will have to proceed methodically
and keep track of the proof state.

It is possible to use a computer to help write these mathematical proofs. Proof assistants
are computer programs that help mathematicians develop proofs by tracking the proof state
precisely (Harrison, Urban, and Wiedijk 2014). Any proofs mechanized using an assistant
can thus be treated with a high degree of trust.

Significant work on abstract interpretation in Coq, one such proof assistant, was done
by Jourdan (2016) in their Verasco static analyzer. Using Coq, the Verasco analyzer is proven
completely sound, although they do so in a way that is not flexible with regards the the
language being analyzed. In their case this is not a problem because they focus specifically
on the C programming language.

Verasco implements several abstract domains and covers a large part of the C language.
It is a large project and therefore serves to highlight a challenge in mechanizing soundness
proofs. The mechanization of such proofs is also labour intensive and seldom done. It is
desirable to find ways to make it easier to develop these soundness proofs.

Keidel, Poulsen, and Erdweg (2018) developed a framework for decomposing soundness
proofs into smaller, independent pieces. The idea is that by reusing lemmas and reasoning
about shared parts between the abstract and concrete interpreters, the resulting proof effort
can be shrunk significantly. The abstract and concrete interpreters are instantiations of a
generic interpreter; this generic interpreter only uses methods exposed by an programming
interface, and the abstract and concrete interpreters provide abstract and concrete implemen-
tations respectively of this interface. The problem of proving the soundness of the abstract
interpreter then simplifies to proving the soundness of the corresponding methods of the
interfaces. This paper served as the starting point for this thesis.

The proofs in Keidel, Poulsen, and Erdweg (2018) are pen-and-paper proofs. By imple-
menting the ideas presented in an interactive proof assistant instead of Haskell, we canmech-
anize these pen-and-paper proofs thus making abstract interpreters that are proven sound
more accessible. We have chosen to use Coq as our interactive proof assistant.

To build our interpreters, we have implement components that model the various side
effects a computer program can have1. These side effects are encoded using monads, which
allow us to write pure programswhile still using these impure side effects. By usingmonads
we are able to reason about the soundness of operations on values and soundness of side
effects separately, which makes the necessary proofs easier. For each of these side effects we
have also implemented corresponding monad transformers that take a monad and create a
newmonadwith the combined side effects of the originalmonad and themonad transformer.

1This implementation can be found at https://github.com/jensdewaard/thesis-coq-code
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1.3. Contributions

We have implemented a monad for two such side effects: changing a global state and
modeling failure. In addition, these monads are also equipped with lemmas proving that
each instance is sound. One of the advantages Coq has over Haskell is the ability to require
soundness proofs for each implemented monad.

Unfortunately, we did encounter difficulties proving the monadic laws for our trans-
formed monads. Monads transformed by the monad transformer for failures are no longer
monads. However, this did not prevent us from proving the soundness of the entire inter-
preter as soundness does not depend on the monadic laws.

1.3 Contributions
The goals of this thesis are to mechanize the soundness components of an interpreter as
designed by Keidel, Poulsen, and Erdweg (2018) in Coq, and to document the challenges
posed by implementing said work in a proof assistant. To this end, we list the following
contributions.

• Soundness proof of an abstract interpreter of a small imperative language with excep-
tions andmutable state, but no loops. This shows that all components come together to
prove an abstract interpreter sound and works as an example for other, more complex
interpreters.

• Mechanization of small components that are individually proven sound and can be
composed to build larger structures, namely by applying a sequence of monad trans-
formers. This allows us to build an interpreter that suits the language we wish to ana-
lyze

• Automated resolution of the required components to prove soundness. Coq’s automa-
tionmechanisms ease our proof burden by allowing us to provide abstract and concrete
instances of the components. Each of these instances require short proofs, which will
be composed by Coq to prove the entire composite structure sound.

• Mechanization of the definition of soundness via Galois connections, using only the
concretization function of those connections, and preorders which allow us to define
the soundness of join operators.

1.4 Outline
This thesis consists of 6 chapters. We start with the necessary background knowledge on
abstract interpretation and how to read Coq in Chapter 2. In Chapter 3 we show how we
have implemented the monadic components and required definitions and how we assemble
these to build concrete and abstract interpreters. In Chapter 4 we show how we can prove
these components sound and how the automation mechanics of Coq can aid us in this. In
Chapter 5 we discuss other mechanization efforts, if they encountered the same problems
we did and how they solved those problems, it at all. In Chapter 6 we close the thesis with a
conclusion.
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Chapter 2

Background

This chapter serves to provide the required knowledge for reading this thesis to readers
without a background in abstract interpretation and proof mechanization. It consists of the
following sections.

• In Section 2.1 we give a brief introduction into abstract interpretation by looking at a
short Java program. We explain how abstract interpretation will allow us to be sure
that the given program does not crash.

• In Section 2.2wedefine a simple arithmetic language anddevelop a concrete interpreter
for this language.

• In Section 2.3 we develop an abstract interpreter of this same language and show how
it has to differ from the concrete implementation.

• In Section 2.4 we define what it means for this abstract interpreter to be sound with
regards to the concrete interpreter and how we can write a proof of this soundness
property.

• Finally, in Section 2.5 we explain the reader how to read the Coq definitions and proofs
in the rest of the thesis.

2.1 What is Abstract Interpretation?
There are multiple ways of analyzing a computer program. If we wish to verify that a

program performs as expected, we can run it on a set of inputs and verify that the output
is what we would expect it to be. If we have written a program to add two integers, we can
run that program on an input of 3 and 6 and ascertain that it indeed returns 9. Because we
actually run the system under test, we call this dynamic analysis.

Another way to verify that the programworks as intended is to look at the source code of
the program. A reader can look for the usage of specific functions that often lead to bugs, or
programmatic constructs that are misused. Analyzing the code in this way without running
the program is called static analysis.

When looking at source code, we can often reason about what a program would actually
do when operating on specific values. To illustrate, consider the following Java program
which includes dividing two positive numbers, implemented as a class called PosInt.

1 public int myfunc(PosInt x, PosInt y) {
2 if y == 0 {
3 return 9;
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2. BACKGROUND

4 } else {
5 return x / y;
6 }
7 }

In Java, dividing by zero results in a runtime error that crashes the program. We would
like some assurance that the program will never crash. Traditional unit testing would run
the program on several possible inputs, but these could never test the complete input space.
Manually looking at the above function will tell us it will never divide by 0, but this quickly
becomes infeasible as the program grows. Using abstract interpretation, we can proof that
the function never crashes.

There is an easy way for us to be certain that the output of our abstract interpreter is an
over-approximation of the output of our concrete interpreter: we can always say that the
output can take any value. We call the abstract value that encompasses all concrete values
Top, often written as J. When doing interval analysis for example, J is equivalent to an
interval of [´8,8]. While this is trivially sound, it is also as imprecise as we can get. When
designing an abstract interpreter, onemust consider how important precision and soundness
are to the desired application.

Because the programwill crashwhendividing by zero, we should considerwhether input
variable y is equal to zero or not. In abstract interpretation, we abstract away the specific
information about the values (e.g., y = 0) and reason only about properties of those values.
Such properties can be varied and very specific like ”y is 0”, or very abstract such as y is a
number.

By reasoning about these properties and looking at the source code, we can determine
the possible paths the program execution may take. Let us consider the if statement in line 2
of the above Java code. If we trackwhether values are zero and y has such an IsZero property,
we know that the first branch is entered and an exception will be raised on line 3. Likewise,
if we were able to track that y has an IsNegative property, or a ”> 10” property, we know that
program execution will continue with the else statement on line 5. Different abstractions
result in different analyses. If the abstraction we use will not allow us to be certain as to
whether y is zero (or not), then an abstract analysis would have to consider both branches of
the if statement.

2.2 Concrete interpretation of an arithmetic language
In this section, we will define a simple arithmetic language in Coq, as well as a concrete and
an abstract interpreter for that language. In our language, we should be able to model the
above Java code, so our language will need division, if statements, variables and a way to
communicate a crash. The concrete version of our language will operate on natural numbers
and standard division defined on natural numbers.

Inductive expr :=
| EVar : string -> expr
| EVal : nat -> expr
| EIfZero : expr -> expr -> expr -> expr
| EDiv : expr -> expr -> expr.

The above Coq command creates an inductive type called expr. Values of type expr
come in four forms, called constructors. Our type has the constructors EVar for references
to variables, EVal for number literals in our program, EIfZero for comparing an expression
to 0 and EDiv for multiplying the results of two expressions. With these constructors, we
can reconstruct the earlier program.
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2.2. Concrete interpretation of an arithmetic language

Definition prog :=
EIfZero (EVar "y")
(EVal 9)
(EDiv (EVar "x") (EVar "y")).

We can define functions and type definitions with the Definition command. The Coq
code above states that value prog is equal to a combination of the constructors we defined
earlier. Together, these constructors form a program that is equivalent to the Java program
above. Like our earlier Java program, this program compares y to 0. If this is the case, the
program returns 9. If y is not 0, it returns the result of dividing x by y.

Fixpoint eval (e : expr) (st : string → nat) : option nat :=
match e with
| EVal n => Some n
| EVar x => Some (st x)
| EIfZero g e1 e2 =>

match eval g st with
| Some O => eval e1 st
| Some (S n) => eval e2 st
| None => None
end

| EDiv e1 e2 =>
match eval e2 st with
| None => None
| Some y =>

match eval e1 st with
| None => None
| Some x => div x y
end

end
end.

We create our evaluator as a Fixpoint ..., which is a type of function that can call
itself recursively. In addition to taking the expression to be evaluated as an argument, the
function also requires a mapping of strings to natural numbers. This mapping serves as the
store where we retrieve the values of our variables. The evaluation returns an option nat
instead of a plain natural number. This indicates that the evaluation can either return a
natural number or fail.

When evaluating the EDiv expression, the evaluator calls another function div that per-
forms the actual division. We assume that if the second operand of this function is zero, the
computation fails and returns None. This models the throwing of a runtime exception.

Definition sample_map := t_update (t_update (t_empty 0) "x" 9) "y" 3.
Compute (eval (prog) (sample_map)).
(* = 3 : nat. *)

We can create maps via the t_update and t_empty functions. t_empty creates an
empty map with a default element, and t_update adds a new entry to a map. Compute
has Coq tell us the resulting value of a function. If we create a mapping that maps x to 9 and
y to 3 and use that mapping to evaluate our sample program, we indeed get our expected
value of 3.

7



2. BACKGROUND

2.3 Abstract interpretation of the language
When performing an abstract analysis, we generally need to create abstract versions of all the
operations and values used in the analyzed program. In our case, we need to decide on an
abstraction for natural numbers and create the division operation for that abstraction.

In this example, we abstract our natural numbers by defining an interval in which the
number may lie. Intervals have a lower and an upper bound, so we will need values to
express this in our abstract interpreter.

When dividing two intervals, we obtain the new lower bound of the interval by dividing
the minimum bound of the numerator by the maximum bound of the denominator. The
inverse is true of the upper bound.

Definition interval := (nat*nat).

Definition interval_div (i j : interval) : option interval :=
let (i_min, i_max) := i in
let (j_min, j_max) := j in
match j_min with
| 0 => None
| j_min' => (Nat.div i_min j_max, Nat.div i_max j_min)
end.

The above Coq code shows the definition of an interval as a combination of two natural
numbers and defines division on intervals. When using Definition to define a function,
we give the required arguments between the parentheses. For clarity, we also annotate the
type of the resulting value. This is option interval

Now that we have abstract values, we can define the abstract interpreter that uses these
values when interpreting the program defined above. In the first constructor EVal we de-
scribe how to define literal, concrete values in our language. To be able to evaluate these
commands we will need a function to extract an abstract value from a literal.

Definition extract (n : nat) : interval := (n,n).

The extract function takes a concrete value and turns it into an abstract approximation of
that value. Later in Chapter 3 we see how we make this function more generic.

Definition join (i j : interval) : interval :=
let (i_min, i_max) := i in
let (j_min, j_max) := j in
(Nat.min i_min j_min, Nat.max i_max j_max).

We have defined a function join that takes two intervals and returns a new interval with
the minimum of the two lower bounds and the maximum of the two upper bounds as new
bounds. We use this function to merge the results of the two branches of the if statement in
the case when we are unsure about the branch taken by the concrete interpreter.

Fixpoint eval_abstract (e : expr) (st : string -> interval)
: option interval :=

match e with
....
| EIfZero g e1 e2 =>

match (eval' g st) with
| None => None

8



2.4. Definition of Soundness

| Some (0,0) => (eval' e1 st)
| Some (S _, _) => (eval' e2 st)
| _ =>

match (eval' e1 st), (eval' e2 st) with
| None, _ | _, None => None
| Some i, Some j => Some (join i j)
end

end
| EDiv e1 e2 =>

match (eval' e2 st) with
| None => None
| Some y =>

match (eval' e1 st) with
| None => None
| Some x => interval_div x y
end

end
end.

The most interesting case here is the evaluation of EIfZero. The evaluator looks at
the value of the guard, the expression being considered in the if statement. If both inter-
val bounds are zero we know that the expression is definitely zero, so the entire if statement
evaluates to the value of the first branch. Likewise, if the lower bound is above zero, we know
that the concrete number will never be zero and can evaluate to the second branch. If the
interval contains zero, we know that the program may take either path and join the results.

We will run the abstract interpreter on an abstract version of our earlier map. In this
example, we know that x is equal to 9, but y can be anywhere between 1 and 3. The result of
our computation is as we expected, a value between 3 and 9.

Definition abstract_map := t_update
(t_update (t_empty (0,0))

"y" (1,3))
"x" (9,9).

Compute (eval' prog abstract_map).
(* = Some(3,9) *)

If we change the lower bound of the denominator to zero, the output of the abstract inter-
preter changes. It becomes None to indicate that the program may crash as the denominator
may be zero. A more sophisticated abstract interpreter may recognize that the surrounding
if statement guards against this, but we did not implement this in this example for simplicity.

Now that we have a concrete and an abstract interpreter, we can look at what it means
for the abstract interpreter to be sound with regards to the concrete interpreter. For this we
will introduce partially ordered sets, lattices and Galois connections.

2.4 Definition of Soundness
Beforewe can prove that our abstract interpreter is sound, we should definewhat soundness
is. We say that an interpreter is sound when, if the inputs to the abstract interpreter are
valid approximations of the inputs to the concrete interpreter, then the output of the abstract
interpreter is a valid approximation of the output of the concrete interpreter.

Recall the Java program in 2.1, in which we branch based on the value of y. The more
precise our analysis is, the more restricted the abstract interval for possible values of y. This

9
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Figure 2.1: Corresponding elements between two partially ordered sets

means that if the compiler can be certain that y is always 0, it can in-line the first branch of
the if statement as part of an optimization step. Or if the interval of possible values for a
variable that is used to index an array is larged than the array, the compiler may warn the
programmer of a possible memory error.

To define the mappings between the concrete and abstract domains, we explore three
mathematical definitions; partially ordered sets, lattices and Galois connections. Partially
ordered sets are sets equipped with a relation that may hold for two elements of the set. This
relation is called the partial order and means that one element somehow precedes another.
This partial order should be reflexive, transitive and antisymmetric. Partially ordered sets
differ from totally ordered sets in that not all elements of the set need to be able to be com-
pared.

For example, natural numbers form a partially ordered set with the less-than-equals op-
eration as the order. In fact, because @x,@y, x ď y or y ď x, they also form a totally ordered
set. We are also able to define a partial order for our intervals. Becausewe use the intervals as
a set of possibilities for the concrete value, we can use set inclusion as the order. An interval
i is less than or equal to an interval j if all numbers included in i are also included in j.

If for every two elements x and y in a partially ordered set there exists elements z and w
such that x ď z and y ď z and such that w ď x and w ď y, and z and w are respectively the
least and greatest such values, that partially ordered set forms a lattice. It also requires the
operations join and meet to result in these bounds.

Now that we know that we can define lattices for both sets of natural numbers and inter-
vals, we can introduce Galois connections. A Galois connection is a connection between two
partially ordered sets (C,ď) and (A,ď) consisting of twomonotone functions γ : A Ñ C and
α : C Ñ A, such that for all a P A and c P C, γ(a) ď c if and only if a ď α(c).

In abstract analysis, these functions are called the concretization and abstract functions.
They define the correspondence between the concrete and abstract domains. Because both
function are monotone, we have the property that c ď γ(α(c)). Concrete values that are
abstracted and then concretized again should be larger or equal to what they were before.
Any abstract interpreter that upholds this property is considered sound.

In ourwork, we focus our attention onGalois connections between sets of concrete values
and abstraction of those sets. In the above example, this means we deal with sets of natural
numbers and intervals. Our abstract evaluation is sound if the output of the abstract evalua-
tor over-approximates the output of the concrete interpreter. In terms of the above functions,
that means eval ď γ ¨ evalabstract.

The γ-function we require for this is different for every Galois connection, and we have
a different Galois connection between every concrete type and every possible abstraction. In
the Coq code below, we define a γ-function to convert intervals into sets of natural numbers.

Definition gamma_interval (i : interval) (n : nat) : Prop :=
let (i_min, i_max) := i in
i_min <= n /\ n <= i_max.

10



2.5. Additional Coq Commands

In 2.1, we show two Hasse diagrams of partially ordered sets. The left Hasse diagram
contains a few elements of the partially ordered set of sets of natural numbers. On the right
is a Hasse diagram portraying a partially ordered set of parities, abstractions of whether a
number is even or odd. Matching colours indicate that the left element ismapped to the right
element via the γ-function. The J and K symbols denote Top and Bottom, which correspond
to all elements and no elements respectively.

The added value of Coq over other functional programming languages such as Haskell
comes from the ability to take definitions and prove properties about them. We start a proof
with the Lemma command. In the below code, we define a lemma called eval_soundwhich
states that for all stores, if all corresponding values in those stores are sound, then our eval-
uator is sound for all possible expressions. We can indeed proof this in Coq using the above
definitions. The entire proof is omitted here, as even for such a simple evaluator the proof
becomes lengthy. Proofs are delimited by the Proof. and Qed. commands. In between
these commands come a series of tactics, which are special commands that help us complete
the proof.

Lemma eval_sound : ∀ st st',
(∀ x, gamma_interval (st' x) (st x)) ->
(∀ e, gamma_interval (eval_abstract e st') (eval e st)).

As we add more features to our interpreter, such as exceptions and mutable state, the
required proofs grow even longer and more complex. In the rest of the thesis, we show how
we have implemented the work of Keidel, Poulsen, and Erdweg (2018) to lessen the proof
burden and what challenges we faced in doing so.

2.5 Additional Coq Commands
We have used Coq to write our definitions and prove the soundness of the abstract inter-

preter (A Short Introduction to Coq n.d.). In this section, we will give some examples of Coq
code along with an explanation of what is meant by the code. Readers familiar with Coq can
skip this section. Other readers may wish to read it to help understand later code listings.

Definition interval_div_lambda : interval -> interval -> interval :=
λ i, λ j,

let (i_min, i_max) := i in
let (j_min, j_max) := j in
(Nat.div i_min j_max, Nat.div i_max j_min).

Here, we have defined interval division using lambda notation. The type signature tells
us that interval_div_lambda is a function that takes an interval and returns a function
that takes an interval and returns a function.

Theorem eval_sound : ∀ st st',
(∀ x, gamma_interval (st' x) (st x)) ->
(∀ e, gamma_interval (eval_abstract e st') (eval e st)).

Aside from Lemma, there are several other commands we can use to state a property or
law. These keywords Theorem, Lemma, Corollary, Remark, Fact and Proposition are
all equivalent. Any semantic difference is up to the developer. In our work, we will mostly
use the Lemma keyword. We shall use the Theorem keyword for the final proof stating the
soundness of the interpreters. On occasion, we will use the Corollary command to state a
lemma that follows trivially from the preceding lemma.
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Notation "℘ A" := (A -> Prop) (at level 0, only parsing).
Infix "/" := interval_div (at level 40).

To keep our Coq code close to the mathematical theory behind it, we introduce a lot of
notations. The Notation command allows us to introduce those notations to Coq. The new
notation is between the quotes, with its definition following after the :=. The term between
the second pair of brackets is technical information about howCoq should parse the notation,
such as left or right associativity. The Infix command is a shorthand for introducing a infix
notation for a binary function.

Class Galois (A A' : Type) : Type := γ : A -> ℘ A'.

In this thesis we utilize the typeclass mechanism of Coq. Typeclasses are a way to define
methods and lemmas for types that implement that typeclass. In the above example, we
define a Galois typeclass that takes two types. It states that implementations of this typeclass
should define a function γ of type A1 Ñ ℘ A.

Instance galois_parity_nat : Galois interval nat := gamma_interval.

To create an instance of a typeclass, we need to define the required functions and lem-
mas. Here, we have defined an inductive relation called gamma_interval that relates in-
stances of interval with sets of natural numbers. We then use that definition in creating
an Instance of the Galois typeclass.

Context {M : Type -> Type} {RO : return_op M}
{BM : bind_op M} {MF : MonadFail M}.

To simplify definition and lemmas, it is possible to use the Context command to define
variables that are required on all following definitions. This improves readability of the Coq
code.
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Chapter 3

Building The Interpreters

In this chapter we will describe how the mechanizations are implemented in Coq and the
theory behind them. The goal is to have a definition of a generic interpreter at the end of the
chapter, as well as concrete and abstract instantiations of this generic interpreter.

• First, in Section 3.1we describe the syntax of a small imperative languagewithout loops
and define a concrete interpreter of this language. In contrast with the arithmetic lan-
guage defined in Chapter 2, this language will have mutable state and exceptions.

• Then, in Section 3.2 we show a concrete interpreter for this language. We build the
interpreter using monads, explain what monads are in Section 3.3 and show how we
can decompose the interpreter for our language due to its monadic structure.

• In Section 3.4 After defining a concrete interpreter for our language, we define an ab-
stract interpreter for abstract interval analysis that will operate on this same language.
We highlight the differences between these two interpreters, as well as the similarities.

• In Section 3.5, based on the similarities noted in the previous section, we define a
generic interpreter. We show how we can instantiate the generic interpreter and ob-
tain our previously defined concrete and abstract interpreters.

After obtaining two interpreters based on a generic interpreterwewill showhow to prove
the abstract interpreter sound with regards to the concrete interpreter in Chapter 4.

3.1 The Language
Programs consist of statements, expressions and values. These programs are evaluated by
interpreters. In this subsection, we shall describe the syntax of a small imperative language
without loops.

Definition cvalue : Type := (nat + bool)%type.

Our language has two types of values. Natural numbers, represented by the Coq type
nat and boolean values, represented by bool. We define concrete values as the sum of
these two types. A sum of two types is a type itself and means that values of that type can
be of the type of either its components.

To be able to use this sum type, we create a typeclass to defines how to convert the com-
ponent types into the composite type and vice versa. This implementation was inspired
by Liang, Hudak, and Jones (1995).

13
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Inductive expr : Type :=
| EVal : cvalue -> expr
| EVar : string -> expr
| EPlus : expr -> expr -> expr
| EMult : expr -> expr -> expr
| EEq : expr -> expr -> expr
| ELe : expr -> expr -> expr
| ENot : expr -> expr
| EAnd : expr -> expr -> expr.

Inductive com : Type :=
| CSkip : com
| CSeq : com -> com -> com
| CAss : string -> expr -> com
| CIf : expr -> com -> com -> com
| CTryCatch : com -> com -> com
| CThrow : com.

Class SubType (sub : Type) (super : Type) : Type := {
inject : sub -> super;
project : super -> option sub

}.

The SubType typeclass specifies a relation between two types that can be converted into
one another. The inject method takes a subtype and turns it into the super type. The project
type performs the inverse operation. However, because a value of the super type is not nec-
essarily an instance of the subtype, we include the possibility of failure. As an example, we
show the instance of the SubType class that converts between nat and (nat + bool).

Instance subtype_l : ∀ {A B}, SubType A (A + B) := {
inject := inl;
project := λ s, match s with | inl x => Some x | _ => None end

}.

In the above instance, inl is the constructor that takes a value a : A and returns a value
of type (A+B). Coq will automatically use the inject function to turn a natural number
into the composite type cvalue using its typeclass inference mechanism. The project
function can turn values of (A+B) into values of option A.

Expressions are operations on values that result in a new value. They are implemented
as an inductive type called expr.

Expressions can exist of concrete values (‘5’, ‘true’), names of variables saved in a store
(see Section 3.3.4) and operations on these values (+, *, ==, <=, negation and &&).

Statements control the flow of the program. In this case, we have implemented a skip
statement that effectively does nothing, an assignment statement that assigns the result of
an expression to a variable, an if statement, a try-catch statement and a throw statement that
acts as an exception.

3.2 The Concrete Interpreter
As shown in Section 3.1 the syntax of the language allows the two types of values, booleans
and natural numbers, to be used interchangeably while still having a valid syntax. However,
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most operations will be meaningless if used on the wrong operators. For example, “1 + true”
is valid syntax, but it is not a valid program.

To ensure that the correct types are used when evaluating operators, the interpreter has
an ensure_type function. Using the project function from the SubType class, we can
see if the provided value is of the desired type.

Definition ensure_type (subType : Type)
{M : Type -> Type} {MM : Monad M} {MF : MonadFail M}
{valType : Type}
{ST : SubType subType valType}
(n : valType) : M subType :=
match project n with
| Some x => returnM x
| None => fail
end.

We explain the meaning of Monad and MonadFail in Section 3.3. For now, the important
part is that the ensure function is a function that is capable of failing. This allows us to reuse
the function with whatever monad we desire, as long as it has the capability for failing.

When the ensure function is called with a type other than the desired type, it returns the
fail value of its monadM. This failure is propagated throughout the rest of the program. This
allows us to model the interpreter crashing if the program is not well-typed.

Fixpoint eval_expr {M} {MF : MonadFail} {MS : MonadState M}
(e : expr) : M cvalue :=

match e with
| EVal x => returnM (inject x)
| EVar x => st << get ;

returnM (st x)
| EPlus e1 e2 =>

v1 << (eval_expr e1) ;
v2 << (eval_expr e2) ;
n1 << (ensure_type nat v1) ;
n2 << (ensure_type nat v2) ;
returnM (inject (n1 + n2))

| EMult e1 e2 =>
v1 << (eval_expr e1) ;
v2 << (eval_expr e2) ;
n1 << (ensure_type nat v1) ;
n2 << (ensure_type nat v2) ;
returnM (inject (n1 * n2))

| EEq e1 e2 =>
v1 << (eval_expr e1) ;
v2 << (eval_expr e2) ;
n1 << (ensure_type nat v1) ;
n2 << (ensure_type nat v2) ;
returnM (inject (Nat.eqb n1 n2))

| ELe e1 e2 =>
v1 << (eval_expr e1) ;
v2 << (eval_expr e2) ;
n1 << (ensure_type nat v1) ;
n2 << (ensure_type nat v2) ;
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returnM (inject (Nat.leb n1 n2))
| ENot e =>

v << (eval_expr e) ;
b << (ensure_type bool v) ;
returnM (inject (negb b))

| EAnd e1 e2 =>
v1 << (eval_expr e1) ;
v2 << (eval_expr e2) ;
b1 << (ensure_type bool v1) ;
b2 << (ensure_type bool v2) ;
returnM (inject (andb b1 b2))

end.

The concrete interpreter follows the same structure for each kind of operator. The smaller
expressions are evaluated first via recursive calls to the evaluation function. Their returned
values are ensured by the interpreter to be of the proper types, so that we may recognizing
ill-typed programs. Then the built-in operator corresponding to the expression is called on
those values. In addition to the MonadFail constraint, the monad used in this interpreter
also needs to be an instance of MonadState. This constraint requires a monad to have ways
of retrieving and setting variables from and to a global state.

Fixpoint ceval {M} {MM : Monad M} {ME : MonadExcept M}
{MS : MonadState M} {MF : MonadFail M}
(c : com) : M unit :=

match c with
| CSkip => returnM tt
| c1 ;; c2 =>

(ceval c1) ;; (ceval c2)
| x ::= a =>

n << (eval_expr a) ;
st << get ;
put (t_update st x n)

| CIf b c1 c2 =>
v << (eval_expr b) ;
b' << (ensure_type bool v) ;
if b' (ceval c1) (ceval c2)

| try c1 catch c2 =>
catch (ceval c1) (ceval c2)

| CFail => fail
end.

The ceval function acts as the concrete interpreter of our language. It is parametrized on
a typeM, which is required to be an instance of several typeclasses. Each of these typeclasses
ensures that our type M has a certain capability. We could have added these capabilities di-
rectly into the definition of our interpreter. However, by decomposing these capabilities
into monads, we can prove properties about those monads directly and prove them for all
interpreters built with those monads. The monad used here also has a MonadExcept re-
quirement, which gives it the ability to handle exceptions via the catch method.

Do notation

The interpreters make excessive use of the bind function of the monads. Because of this, we
introduce a special notation for the function, also borrowed from Haskell.
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If we did not include this notation, making use of the Monad would quickly become
cumbersome. With it, we are able to write data pipelines in an imperative style. To illustrate,
the below code shows the two different styles. As the length of the ‘imperative’ program in-
creases, the functional notation growsmore cumbersome and error prone due to the number
of parentheses involved.

Example do_notation :=
v << eval_expr e ;
b << ensure_bool v ;
returnM (inject (negb b)).

Example nested_notation :=
(eval_expr e) >>= (λ v,

(ensure_bool v) >>= (λ b,
returnM (inject (negb b)))).

3.3 Monads
Many tutorials explaining monads exist and monads are generally regarded as difficult to

understand (Petricek 2018). We will briefly try to explain them here, though a complete
understanding monads is not necessary to follow later sections. Understanding that we can
decompose the program along the lines of the methods provided by the Monad typeclass is
sufficient.

Monads are a way to add impure effects to a pure language. Examples of impure effects
are modifying a global state, throwing and handling exceptions and perform IO operations.
A Computer Science course (IO and monads n.d.) at the University of Pennsylvania likens
monads to a recipe, a description of steps to take. Such descriptions are values themselves,
which makes using monads pure.

In Coq we can implement monads in the form of a typeclass (Sozeau and Oury 2008),
as it is done in Haskell (Wadler 1995). Typeclasses are somewhat like interfaces in object-
oriented programming languages. A programmer can write functions operating on type-
classes instead of concrete types, and those functions can accept all types that implement the
functions defined in that specific typeclass. In this case, all types belonging to the Monad
typeclass must implement two functions, bind, originally called * in the paper byWadler, and
return, originally called unit. An implementation of monads as a typeclass in Coq is given
below.

Class Monad (M : Type → Type) : Type :=
{
returnM : ∀ {A}, A -> M A;
bindM : ∀ {A B}, M A -> (A -> M B) -> M B;

}.
Notation "m >>= f" := (bindM m f) (at level 40, left associativity).

Because return is a reserved keyword in Coq, we rename both return and bind into
returnM and bindM respectively. returnM takes a value andwraps it in themonad. bindM
is a function that can apply a function to a monadic value. As is the convention in Haskell,
we will use »= as an infix notation for the bindM function.

One of the advantages that Coq typeclasses have over those in Haskell is the ability to
add lemmas to the typeclass in addition to the methods. Proper monads have to observe
three laws, together called the Monad laws. These laws are left identity, right identity and
associativity. These mean that binding returnM to a function f is equivalent to just applying
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f to the value wrapped by returnM. The second law states that binding to returnM is
effectively a no-op, and the last law requires bindM to be associative. In Coq, we can add the
following lemmas to a typeclass to ensure that all its instances are valid monads, which is
something that Haskell cannot guarantee.

Class CorrectMonad (M : Type -> Type) : Type := {
bind_id_left : ∀ {A B} (f : A -> M B) (a : A),

bindM (returnM a) f = f a;
bind_id_right : ∀ {A} (m : M A),

bindM m returnM = m;
bind_assoc : ∀ {A B C} (m : M A) (f : A -> M B) (g : B -> M C),

bindM (bindM m f) g = bindM m (λ a, bindM (f a) g);
}

Whenwewill define themonad transformer for the abstract optionmonad in Section 3.4.2,
we shall see that the resulting type does not satisfy all the monadic laws. Because it turns
out that the interpreters and their soundness proofs do not depend on these laws, we have
not added the laws to our Monad typeclass.

Eventually, we will also see that the bind method of the optionAT monad transformer
requires additional constraints on the transformedmonadM compared to its return method.

For our interpreter, we require monads that add two different side effects. The first is
the option monad, also known as Maybe in the Haskell standard library. The option monad
adds the possibility of failure to an operation. The other is the State monad, which allows us
to keep track of a global state. In the next few sections we will discuss the implementation
of these monads.

3.3.1 Option
Inductive option A : Type :=

| Some : A -> option A
| None : option A.

The first monad we use is the option monad, which is based on the option type from
the Coq standard library. Values of the type option A can be of either the form Some a,
where a is a value of type A, or None. Here, None represent a failed computation. For
example, a monadic version of division nat -> nat -> option nat could return None
when dividing by zero, and a Some value with the right answer in other cases.

The return method of option is the same as the Some constructor. The bindM method
of the option monad performs a case analysis on the provided value. In the case of Some,
it extracts the inner value and applies the given function to it. In the case of None, it re-
turns None. This allows the chaining of multiple operations without explicit error handling
between each step.

Definition return_option {A} : option A := Some.

Definition bind_option {A B}
(m : option A) (k : A -> option B) : option B :=

match m with
| None => None
| Some a => k a
end.

Instance option_monad : Monad option :=
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{
returnM := return_option;
bindM := bind_option;

}.

Recall that the monadic laws require that returnM is a left and right identity for bindM,
and that bindM is associative. If we have proven this for Some and bind_option, we can
combine those three lemmas together with the definition of bind_option and Some into
an instance for the CorrectMonad typeclass.

3.3.2 State
When we evaluate a program, we will require a way to keep track of a global state. This state
can be as simple as an integer that keeps a count of the number of operations performed, or a
mapping of strings to values V, as was the case in our interpreter in Chapter 2. Recall that in
the eval and eval' functions we had to pass along the st and st' values to each recursive
call.

The State monad allows us to add the ability for tracking state to a pure programwithout
referring to a global state variable or explicitly passing along such a variable. It is defined
as Definition State (S A : Type) := S -> (A * S). The State monad wraps a
value in a function that keeps track of an additional value of type S. Looking at the types of
State and return shows us how we ought to implement the return function for State.

Definition return_state {S A} : A → State A :=
λ a : A, λ st : S, (a, st).

The bindMmethod for State passes the state variable along to the next computation. Up-
dated states are passed along and the current state is accessible at each step of the computa-
tion operation.

Definition bind_state {A B}
(m : State S A) (f : A -> State S B) : State S B :=
λ st, let (x, st') := m st in f x st'.

The above code shows us how the bind method is implemented. The result of binding
a State value to a function is a new function (as all values of State need to be) in which the
provided state variable is applied to the State value. The result of this computation, including
the new updated state, is then passed to the continuation function f.

In theory, thismonad shouldwork for any type S that respects the above laws. Themonad
can be usedwith an integer that counts something, or a boolean that tracks the current player
in a two-player game. In our work we want to use the State monad to track variables, so we
use a mapping between strings and values as a type for S.

The State and option monads show us how we would implement the desired properties
of our small imperative language in a pure manner. But right now, we will have to choose
between the two. We can either have the evaluator utilize the State monad to keep track of
state, or have it use the option monad to allow exceptions, but we cannot yet have a runtime
in which we can both throw exceptions as well as keep track of a global state. There is a way
to combine the functionalities of monads via the use of monad transformers.

3.3.3 Monad Transformers
Monad transformers (Liang, Hudak, and Jones 1995) are a way to add the side effects of

a monad to another monad. For both of the monads we defined earlier, we define a corre-
sponding type that takes a monad as an input and returns a new monad instance.
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Context {M : Type -> Type}.
Definition optionT M A: Type := M (option A).
Definition StateT S M A : Type := S -> M (A*S)%type.

Listing 1: Definitions for the monad transformers

We define two transformer monads that correspond to the monads defined above: op-
tionT and StateT. These extend a monad by allowing for failing computations and the ability
to retain a global state.

When providing instances for the Monad typeclass for these types, we require the use of
the bindM and returnMmethods of the wrapping monad M. For example, in the definition
of bind_optionT below, we see that the implementation unwraps the monad M, exposing
the underlying option value. We perform a case analysis on this value in a way that is similar
to how we defined bind_option, None values are propagated and values wrapped with
Some are threaded through chained bind calls.

Definition bind_optionT {A B} (x : optionT M A)
(f : A -> optionT M B) : optionT M B :=
x >>= (λ v : option A,
match v with
| None => returnM None
| Some a => f a
end

).

Inductive Identity (A : Type) : Type :=
identity : A -> Identity A.

Aside from State and option, we also implemented the Identity monad. This monad, like
the identity function, adds no extra functionality. Its value lies in the ability to use it where
we would a monad in cases where we don’t want to add extra functionality. To reduce our
code base, we implemented State as the StateT transformer applied to the Identity monad.
The resulting monad simplifies to our prior definition of State, without us needing to prove
soundness of both State and StateT. Having access to the Identity monad also opens up
the possibility of reusing the monad when implementing more monad transformers.

3.3.4 MonadFail, MonadExcept and MonadState
With the use of monad transformers we are able to build a so-called monad stack to encode
the side effects we want in a pure way. However, when we write code that reasons about
possible side effects, we want to abstract away the specific stack that is used. It is therefore
desirable to be able to reason about the abilities provided by a given monad stack.

For this use case, we haveportedMonadFail,MonadExcept andMonadState fromHaskell
(Gibbons and Hinze 2011). The easiest way to explain why we use these typeclasses is that
the typeclasses option and State were more concerned with how the side effects were imple-
mented, whereas these typeclasses deal more with what side effects a type can cause in a
monad stack.

Class MonadFail M {BM : bind_op M} : Type := {
fail : ∀ {A : Type}, M A;

}.
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This is the definition for the MonadFail typeclass. The definition tells us that all in-
stances of MonadFail have a value called fail. Convention holds that when this value is
used on the left-hand side of a bind, the resulting value is also fail. We shall follow that
convention as well in our instances of MonadFail.

The implementation of this typeclass for the option monad is simple. We can use None
as the fail value. The proof for the fail_left lemma, which states that fail on the left
side of a bind results in fail, follows readily from the definition of bind_option. The
same goes for optionT, in which case our fail value is returnM None.

However, things get slightly more interesting when looking at StateT. StateT pre-
serves the ability for failure if the underlying monad M is an instance of MonadFail. The
Identitymonad is not an instance of MonadFail, so the standard Statemonad is not an
instance either.

Section fail_stateT.
Context {M : Type -> Type} {RO : return_op M}
{BM : bind_op M} {MF : MonadFail M}.

Context {S : Type}.

Definition fail_stateT {A} : StateT S M A :=
λ st, fail >>= λ a, returnM (a, st).

Lemma fail_stateT_left : ∀ (A B : Type) (f : A -> StateT S M B),
fail_stateT >>= f = fail_stateT.

Proof. ... Qed.

Global Instance monad_fail_stateT : MonadFail (StateT S M) :=
{
fail := fail_stateT;

}.
End fail_stateT.

The above code shows how the usage of fail method of the underlying MonadFail is
changed towork for the transformedStateTmonad instead. In the definition offail_stateT,
the fail value is that of the underlying monad M. This value is bound to the return method
of StateT, which ”lifts” the fail value to a value of type StateT S M A. The proof unfolds
the methods defined in terms of StateT and rewrites the goal based on the monadic laws for
bind and the fail_left lemma.

Now that we have described monads that can fail, we will shift the focus to monads that
can recover from failure. To describe this ability, we have the MonadExcept typeclass.

Class MonadExcept M {RO : return_op M} {BM : bind_op M} := {
throw : ∀ {A}, M A;
catch : ∀ {A} {JA : Joinable A A} {JAI: JoinableIdem JA},
M A -> M A -> M A;

}.

For all instances of MonadExcept, we define a throw value and a catch method. These
are a lot like try-catch functionality in languages such as Java. The throw function is a value
of the monad M. The catch function should take two values of type M A. If the first is throw,
it returns the second provided value. If it is not, it returns the first provided value. This
behaviour is encoded in the lemmas associated with the typeclass, which should hold for all
valid instances of the class.
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Definition store := total_map cvalue.

Definition t_update {A:Type} (m : total_map A)
(x : string) (v : A) :=

λ x', if beq_string x x' then v else m x'.

Class MonadState (S : Type) (M : Type -> Type) {MM : Monad M} :=
{

get : M S;
put : S -> M unit;

}.

In the same way that we use typeclasses to easily access the fail effects, we can use a
typeclass to access the state that is carried by the (transformed) monad. Any monad im-
plementing the MonadState typeclass should provide access to a get method that sets the
current state as the ’return value’ of the function, and a put method that updates the carried
state with the given value.

Section store_stateT.
Context {S : Type}.
Context (M : Type -> Type) {MM : Monad M}.

Definition stateT_get := λ s : S, returnM (s, s).

Definition stateT_put := λ s : S, λ _ : S, returnM (tt, s).

Global Instance store_stateT :
MonadState S (StateT S M) :=
{

get := stateT_get;
put := stateT_put;

}.
End store_stateT.

Stores

The State monad is instantiated with a type S that should be some sort of storage for the state.
In our language, we want to be able to use variables from a store that we can read from and
write to.

The concrete store is a map1 from strings to concrete values. The store is implemented as
a total map, which is a map that returns a default value when a key is requested that is not
present in the map. Values can be added to the map via the t_update function.

We could also have used a partial map. Partial maps return an option, instead of the
undecorated type. Returning the default None value would be like throwing an exception.
The decision matters little for proving soundness, as the soundness of the interpreter will be
predicated on the soundness of the starting states.

1The total_map comes from Map.v from the public Software Foundations course(Software Foundations 1 : Log-
ical Foundations n.d.).
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3.4 The Abstract Interpreter
3.4.1 Abstract Values
Defining the abstract domains is an important decision when doing abstract analysis. Differ-
ent abstractions lend themselves to different types of analyses. Included in our project are
two different abstractions of natural numbers and an abstraction of booleans.

Parities

The first abstract type we define is Parity.

Inductive parity : Type := par_even | par_odd | par_top.

The parity of a natural number is whether it is even or odd; e.g. the parity of the number 2
is even, and the parity of the number 9 is odd. Operations that we can define for natural num-
bers can also be defined for parities. Our language can deal with addition andmultiplication,
so we have defined these operations for parities.

Definition parity_plus (p q : parity) : parity :=
match p with
| par_even => q
| par_odd => match q with

| par_even => par_odd
| par_odd => par_even
| par_top => par_top
end

| par_top => par_top
end.

Definition parity_mult (p q : parity) : parity :=
match p, q with
| par_even, _ | _, par_even => par_even
| par_top, _ | _, par_top => par_top
| _, _ => par_odd
end.

Intervals

Parities are only one possible abstraction of natural numbers. Another possibility would be
to use intervals. In this section, we describe the implementation of intervals using dependent
records.

An interval of natural numbers is a valid abstraction of a set of natural numbers if each
of the natural numbers in the set falls within the interval. For example, the interval [1,5] is
an abstract approximation of the set {2, 4, 5}. It is also a valid approximation of the set
{1,5}.

The same operators than can be defined on natural numbers can be defined on intervals.
Addition, multiplication and comparisons can all be implemented. Adding the intervals
[1,3] and [4, 7]would result in the interval [5, 10], for example. Whenever we define
an interval, we also need to provide a proof that the minimum end of the interval is less than
the maximum end. This is represented in the record by the min_max field.

Record interval := Interval {
min : nat;
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max : nat;
min_max : min <= max;

}.

Definition iplus (i1 i2 : interval) : interval :=
Interval ((min i1) + (min i2)) ((max i1) + (max i2)) (plus_min_max i1 i2).

Definition interval_mult (i1 i2 : interval) : interval :=
Interval ((min i1) * (min i2)) ((max i1) * (max i2)) (mult_min_max i1 i2).

Unlike parity, our Interval type does not have a candidate for a top value that we
can implement in Coq. To work around this, we introduce borrow the top_op class from
Verasco (Jourdan 2016). By providing two constructors, Top and NotTop, we can add a top
value to any type. Furthermore, we can define lemmas about such lifted types once and for
all.

Class top_op (A:Type) : Type := top : A.
Inductive toplift (A: Type) :=

| Top : top_op (toplift A)
| NotTop : A → toplift A.

Notation "t +⊤" := (toplift t) (at level 39).

Abstract Booleans

The abstract booleans are only slightly different from their concrete counterpart. We supple-
ment the normal boolean values (true and false) with a value for top, again using the toplift
type.

Definition abstr_bool : Type := bool+⊤.

When we use our abstract booleans, we first do a case analysis to determine whether
we are dealing with J. If we are not, we can perform whatever operations on booleans we
intended to do.

3.4.2 The Interpreter
We again define the interpreter in a monad-agnostic way. We require the used monad to
have the same capabilities as the one in the concrete interpreter, namely failing and state.

The abstract state differs from the concrete state in what values, and with those, what
type of store is used. The abstract store is almost the same is the concrete store, but returns
abstract values instead of concrete values. When concrete values are inserted in the store,
they are first converted into their abstract counterpart via the extract function.

Definition avalue := (parity+abstr_bool)%type.

Fixpoint eval_expr_abstract {M} {MF : MonadFail M} {MS : MonadState M}
(e : expr) : M avalue :=

match e with
| EVal x => returnM (inject x)
| EVar x => st << get ;

returnM (st x)
| EPlus e1 e2 =>

v1 << (eval_expr_abstract e1) ;
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v2 << (eval_expr_abstract e2) ;
n1 << (ensure_type parity v1) ;
n2 << (ensure_type parity v2) ;
returnM (inject (parity_plus n1 n2))

| EMult e1 e2 =>
v1 << (eval_expr_abstract e1) ;
v2 << (eval_expr_abstract e2) ;
n1 << (ensure_type parity v1) ;
n2 << (ensure_type parity v2) ;
returnM (inject (parity_mult n1 n2))

| EEq e1 e2 =>
v1 << (eval_expr_abstract e1) ;
v2 << (eval_expr_abstract e2) ;
n1 << (ensure_type parity v1) ;
n2 << (ensure_type parity v2) ;
returnM (inject (parity_eq n1 n2))

| ELe e1 e2 =>
v1 << (eval_expr_abstract e1) ;
v2 << (eval_expr_abstract e2) ;
n1 << (ensure_type parity v1) ;
n2 << (ensure_type parity v2) ;
returnM (inject top_op)

| ENot e =>
v << (eval_expr_abstract e) ;
b << (ensure_type abstr_bool v) ;
returnM (inject (neg_ab b))

| EAnd e1 e2 =>
v1 << (eval_expr_abstract e1) ;
v2 << (eval_expr_abstract e2) ;
b1 << (ensure_type abstr_bool v1) ;
b2 << (ensure_type abstr_bool v2) ;
returnM (inject (and_ab b1 b2))

end.

The abstract interpreter for expressions looksmuch the same as the concrete version. The
difference is that the operations on the types are now the abstract versions. For example,
where the concrete interpreter called the standard plus operator for natural numbers, the
abstract interpreter calls the parity or interval plus function.

The optionA monad

So far, we have seen the fail method of option used to model crashed programs due to type
mismatches, for exampling when adding two booleans, or a boolean and a natural number.
These kind of failures should occur at the same time in both the abstract and the concrete
interpreter. In our language, we alsomodel exceptions, which introduce a kind of uncertainty.
Consider the following Java snippet.

if (x == 0) {
throw new Exception();

else {
x = 3;

}
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We could try to model such a program with just the None value of option. This proves
insufficient when this program is interpreted in an abstract way, because an abstract inter-
preter might be uncertain whether x is equal to 0 or not and has to reflect this in the returned
value. We introduce the monad optionA (Keidel, Poulsen, and Erdweg 2018) to capture this
side effect. In addition to constructors modelling successful and failed operations, this type
has a constructor that models uncertainty as to whether the operation has succeeded.

Inductive optionA (A : Type) : Type :=
| NoneA : optionA A
| SomeA : A -> optionA A
| SomeOrNoneA : A -> optionA A.

As with option, we have a monad transformer that adds this functionality to a monad.
We call this transformer optionAT and we define it as
Definition optionAT M A := M (optionA A).

3.5 Extracting the Generic Interpreter
As observed in the previous section, the abstract and concrete interpreter share many sim-

ilarities. This leads us to the question of whether we can decompose the interpreters along
the generic structure in a way that eases the proof burden. In this section, we look at how
we have extracted the generic interpreter and how this generic structure can be instantiated
to create abstract and concrete interpreters like those defined earlier.

3.5.1 Value typeclasses
The generic interpreter needs to have a uniform way of handling values, as it can be instanti-
atedwith either abstract or concrete values. For every type of concrete valuewewill require a
corresponding interface. In our case, this means that we will require an interface for boolean
types and an interface for numerical types.

For flexibility, we have a typeclass for every operation that should be supported on a value.
This allows us to add each operation in a modular way. For booleans, these operations are
and (&&), negation and an if operator.

Class and_op (A B : Type) : Type := and : A -> A -> B.

Class neg_op (A B : Type) : Type := neg : A -> B.

Class if_op (A B : Type) : Type := when : A -> B -> B -> B.

Wehave a typeclass for each operation that can occur in the source code. Because the type-
classes are separate, we can easily analyze languages with different capabilities by adding or
removing instances and constraints on the interpreter. The languagewe are considering now
works with booleans and natural numbers. All value types, both abstract and concrete, need
corresponding instances of the typeclasses.

Instance and_ab_op : and_op abstr_bool :=
λ ab1 ab2,

match ab1, ab2 with
| Top, _ | _, Top => Top
| NotTop b1, NotTop b2 => NotTop (andb b1 b2)
end.

Instance and_op_bool : and_op bool := andb.
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In the above code, we can see the and instance for our abstract booleans. If either of the
arguments is J, we can no longer be sure of the outcome so it turns into J as well. Otherwise,
we use the result of the standard and operation on booleans. This function from the standard
library is also used as an instance of the typeclass for standard booleans. All this allows the
type inference to automatically grab the correct operations.

3.5.2 A parametric interpreter
Fixpoint generic_eval_expr

{M : Type -> Type}
{MM : Monad M}
{MF : MonadFail M} {MS : MonadState (store valType) M}
...

As was the case with our concrete and abstract interpreter, the generic interpreter is
parametrized over a monad that should have the required capabilities. In the case of the
generic evaluation of expressions, these capabilities should be failing and the handling of
state.

...
{valType boolType natType : Type}
{EC : extract_op cvalue valType}
{SB : SubType boolType valType}
{SN : SubType natType valType}
...

In contrast with the concrete and abstract interpreters, the generic interpreter does not
know which type of values it should handle. These will now have to be passed along during
instantiation aswell. We do impose a few requirements on them, namely the ability to extract
the value type from a literal concrete type found in the code. Furthermore, the composite
value type should be a supertype of the types used as natural numbers and booleans.

...
{PO : plus_op natType natType}
{MO : mult_op natType natType}
{EO : eq_op natType boolType}
{LO : leb_op natType boolType}
{NO : neg_op boolType}
{AO : and_op boolType}
...

Finally, we require that the provided types have implemented the required operations
and are therefore suitable to be used as values for natural numbers and booleans.

Fixpoint generic_eval_expr
...
(e : expr) : M valType :=

match e with
| EVal v => returnM (extract v)
| EVar x =>

s <- get;
returnM (s x)

| EPlus e1 e2 =>
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v1 <- generic_eval_expr e1 ;
v2 <- generic_eval_expr e2 ;
n1 <- ensure_type natType v1 ;
n2 <- ensure_type natType v2 ;
n <- returnM (n1 + n2) ;
returnM (inject n)

| EMult e1 e2 =>
v1 <- generic_eval_expr e1 ;
v2 <- generic_eval_expr e2 ;
n1 <- ensure_type natType v1 ;
n2 <- ensure_type natType v2 ;
n <- returnM (n1 * n2) ;
returnM (inject n)

| EEq e1 e2 =>
v1 <- generic_eval_expr e1 ;
v2 <- generic_eval_expr e2 ;
n1 <- ensure_type natType v1 ;
n2 <- ensure_type natType v2 ;
b <- returnM (n1 = n2) ;
returnM (inject b)

| ELe e1 e2 =>
v1 <- generic_eval_expr e1 ;
v2 <- generic_eval_expr e2 ;
n1 <- ensure_type natType v1 ;
n2 <- ensure_type natType v2 ;
b <- returnM (leb n1 n2);
returnM (inject b)

| ENot e1 =>
v1 <- generic_eval_expr e1 ;
b1 <- ensure_type boolType v1 ;
b <- returnM (neg b1);
returnM (inject b)

| EAnd e1 e2 =>
v1 <- generic_eval_expr e1 ;
v2 <- generic_eval_expr e2 ;
b1 <- ensure_type boolType v1 ;
b2 <- ensure_type boolType v2 ;
b <- returnM (b1 && b2) ;
returnM (inject b)

end.

The required instances are added as implicit constraints to the definitions of the generic
interpreter. In the definition of the generic interpreter, we have replaced all functions specific
to an implementation by functions defined in the typeclasses. The structure of the interpreter
remains the same. First we do a case analysis on the expression being evaluated, then we
evaluate subexpressions, make certain the result of those subexpressions are valid inputs for
our currently evaluated expression, and finally perform the expected operation. By doing
this, we can get the type engine of Coq to infer the required instances for us. This greatly
simplifies how we can now define the abstract and concrete interpreters. We only need to
supply the desired monad and the desired abstraction.

Definition ConcreteState := optionT (StateT store option).
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Definition AbstractState :=
optionAT (StateT abstract_store option).

Definition conrete_interpreter (c : com) : ConcreteState unit :=
generic_ceval (M:=ConcreteState) (valType:=cvalue)
(boolType:=bool) (natType:=nat).

Definition abstract_interpreter (c : com) : AbstractState unit :=
generic_ceval (M:=AbstractState) (valType:=avalue+⊤)
(boolType:=abstr_bool) (natType:=parity).

This chapter showed how we had defined all necessary components to build our inter-
preter. In the next chapter, we will discuss how we have implemented our definition of
soundness from Chapter 2 in Coq and how we go about proving the soundness of all those
components.
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Chapter 4

Proving The Interpreter Sound

In this chapter, we describe what it means for the abstract interpreter to be sound with
regards to the concrete interpreter and how we define this soundness in Coq. In addition,
we show how we utilize the tools Coq provides to automate the soundness proofs.

• In Section 4.1 we describe our mechanization of the Galois connections that form the
basis of our definition of soundness.

• In Section 4.2, we will utilize these Galois connections to state the main theorem of
this paper, the soundness of the interpreter. We show how we can decompose this
soundness proof into many small components that reduce the complexity of the final
proof.

• In Section 4.3 we describe howwe have implemented a typeclass for each of the compo-
nents used in the soundness proof. Any instances of these typeclasses are automatically
used by Coq to construct the required proof.

• In Section 4.5wewill thendescribe someof the custom tacticswehavewritten to further
ease the proof burden for the various parts of the project. Many proofs regarding, for
example, the same typeclass instances follow the same pattern which makes them a
excellent candidates for automation.

• Section 4.4 describes how we can use the auto and eauto tactics to help solve the
proofs that are not easily solved via a custom tactic. Proper utilization of these and the
autorewrite and autounfold tactics will make it much easier to add new abstrac-
tions of components to the project.

4.1 Galois Connections
In this section we will describe the notion of Galois connections (P. Cousot and R. Cousot

1992). Beforewe do so, we take amoment to show ourmechanization of preordered sets. We
define typeclasses for preordered sets and define monotonicity before moving on to define a
typeclass for Galois connections. We will also give a few examples of Galois connections to
help make the concept more clear.

4.1.1 Preordered sets
The first definition we shall implement is the notion of a preordered set. A preordered set
is any set S on which we can define a preorder relation Ď such that the preorder relation is
reflexive and transitive. That is, @a, a Ď a (reflexivity) and @a, b, c, if a Ď b and b Ď c, then
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a Ď c (transitivity). We refer to such a combination of set S and relation as (A,Ď). This gives
us the following definition of the preordered set as a Coq type class.

Class PreorderedSet (A : Type) : Type :=
{

preorder : A -> A -> Prop;
preorder_refl: ∀ x, preorder x x;
preorder_trans: ∀ x y z,

preorder x y ->
preorder y z ->
preorder x z;

}.
Infix "⊑" := preorder (at level 40).

In addition, we introduce the notation Ď to denote a preorder. Now that we have defined
preorders we can define monotonicity, which is a concept which we require for a proper
implementation of Galois connections. A function is monotone if a larger input also results
in a larger output.

Definition monotone {A B : Type}
{PA : PreorderedSet A} {PB : PreorderedSet B}
(f : A -> B) : Prop := ∀ a a', a ⊑ a' -> (f a) ⊑ (f a').

4.1.2 Galois connections
Traditionally, Galois connections are defined on two partially ordered sets. However, they
can also be defined on preordered sets and for the purposes of proving soundness that is
sufficient. The difference between preordered sets and partially ordered sets is that a partial
order is antisymmetric in addition to reflexive and transitive. Because we do not require the
antisymmetric property, we did not add a lemma for it to the typeclass.

The definition of Galois connections that we have implemented is that of the monotone
Galois connection. Given two preordered sets (A,Ď) and (B,Ď), a Galois connection be-
tween those two sets is defined as two functions α : A Ñ B and γ : B Ñ A such that α a Ď b
if and only if a Ď γ b.

Class Galois (A A' : Type) : Type := γ : A -> ℘ A'.

Instancing the Coq type class definition of Galois connections between two types A and
A1 requires supplying those types, as well as a gamma function γ : A Ñ ℘ A1.

A difference between the Coq implementation and themathematical definition is the lack
of corresponding α function. This is because we are unable to define this function, due to
limitations in Coq. Luckily, it turns out that the α function is not necessary to prove sound-
ness (Jourdan 2016).

Note that the Coq definition does not require A to be a preordered set. This is a design
choice that allows us to define the gamma function between an abstract type and a concrete
type without having to proof that the abstract type has a preorder. We define the soundness-
preserving properties of the preorder separately via the following typeclass.

Class PreorderSound (A A' : Type) {PA : PreorderedSet A}
{GA : Galois A A'} : Prop :=

preorder_sound : ∀ x y : A,
x ⊑ y ->
γ x ⊆ γ y.
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Any instances of the preorder typeclass should be accompanied by a corresponding in-
stance of the PreorderSound typeclass, to verify that the definitions of both preorder and
gamma are correct.

For all abstract types, we define an ordering and a gamma connection. For our abstract
version of the Maybe monad, we define a lattice with SomeOrNoneA as the top element.
NoneA and SomeA correspond to None and Some. The relationship between preorders and
Galois connections can be seen in the code below. For any x that is an approximation of x1,
all y such that x Ď y are also approximations of x1. This is equivalent to the lemma posed by
PreorderSound.

Inductive optionA_le : optionA A -> optionA A -> Prop :=
| optionA_le_none : optionA_le NoneA NoneA
| optionA_le_none_justornone : ∀ y,

optionA_le NoneA (SomeOrNoneA y)
| optionA_le_just : ∀ x y,

x ⊑ y ->
optionA_le (SomeA x) (SomeA y)

| optionA_le_justornone_r : ∀ x y,
x ⊑ y ->
optionA_le (SomeA x) (SomeOrNoneA y)

| optionA_le_justornone : ∀ x y,
x ⊑ y ->
optionA_le (SomeOrNoneA x) (SomeOrNoneA y).

Inductive gamma_optionA {A A'} {GA : Galois A A'} :
optionA A -> ℘ option A' :=

| gamma_noneA : gamma_optionA NoneA None
| gamma_SomeornoneA_none : ∀ a,

gamma_optionA (SomeOrNoneA a) None
| gamma_SomeA_Some : ∀ a' a,

γ a' a ->
gamma_optionA (SomeA a') (Some a)

| gamma_Someornone_Some : ∀ a' a,
γ a' a ->
gamma_optionA (SomeOrNoneA a') (Some a).

4.2 Soundness
The main focus of this thesis is the soundness of the abstract interpreter. In this section, we
will definewhat it means for an abstract function to be soundwith regards to a concrete func-
tion, and show how we prove the abstract interpreter is sound with regards to the concrete
interpreter.

Our definition of sound is dependent on our definition of gamma: an abstract function
is sound if its output approximates the output of a concrete function, provided the inputs of
the abstract function approximated the inputs of the concrete function.

For example, if we have two functions f : A Ñ B and f 1 : A1 Ñ B1, where there are
two Galois connections between A and A1, and B and B1 respectively, then when there is a
gamma relation between the input values, therewill be a gamma relation between the output
values.

This is a bit of an obtuse definition, so we will provide some examples. Let us look at the
soundness of the parity plus function. We will show what it means for that function to be
sound with regards to standard addition of natural numbers.
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Definition parity_plus (p q : parity) : parity :=
match p with
| par_even => q
| par_odd => match q with

| par_even => par_odd
| par_odd => par_even
| par_top => par_top
end

| par_top => par_top
end.

So in more concrete terms, the function parity_plus is sound with regards to plus if
when, if the inputs are related, the output is also related. In Coq, this notion of relatedness
is written as follows

Lemma parity_plus_sound : ∀ (p1 p2 : parity) (n1 n2 : nat),
γ p1 n1 -> γ p2 n2 ->
γ (parity_plus p1 p2) (plus n1 n2).

If p1 is an abstract representation of n1, and p2 is an abstract representation of n2, then
parity_plus p1 p2 should be an abstract representation of plus n1 n2.

Due to the automation capabilities of Coq, the actual proof for the soundness of the
parity_plus function is very short.

Proof.
autounfold with soundness. repeat constructor. intros.
destruct p1, p2; eauto with soundness.

Qed.

The proof is written using case analysis. It considers all possible constructors of the pari-
ties and simplifies the result of the parity_plus function. Then it uses the lemmas from the
standard libraries of adding combinations of even and odd numbers to solve the subgoals.

We have similar proofs for each of the operations on values. We will not list all those
proofs here, as they are all short and of similar structure. Examine all possible input values;
resolve the functions and ascertain the preservation of the gamma relation in those cases
where the hypotheses hold.

More interesting are the soundness proofs for the interpreters. Because the abstract and
concrete interpreters both consist of the same structure, the generic interpreter, the inter-
preters can be decomposed along the same lines.

As discussed in Section 3.3, we can decompose the program along the lines of the bind
methods. If we can proof that the bind methods of our chosen monads are sound and that
the functions called by the bind methods are sound, than the entire interpreter is sound.

Theorem sound_interpreter : ∀ c,
γ (generic_ceval (M:=AbstractState) (valType:=avalue+⊤)

(boolType:=abstr_bool) (natType:=parity) c)
(generic_ceval (M:=ConcreteState) (valType:=cvalue)
(boolType:=bool) (natType:=nat) c).

Proof.
eapply generic_ceval_sound; typeclasses eauto + eauto with soundness.

Qed.
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The above theorem is the goal of this thesis, proving that two interpreters, both instanti-
ations of a generic interpreter, are sound. We start by introducing a lemma that turns this
theorem into many smaller lemmas.

Lemma generic_ceval_sound (M M' : Type -> Type)
...
{GN : Galois natType natType'}
{GB : Galois boolType boolType'}
{GM : ∀ A A', Galois A A' -> Galois (M A) (M' A')}
{MFS : MonadFailSound M M'}
{EXS : extract_op_sound EX (extract_sum extract_nat extract_bool)}
{SSB : SubTypeSound SB SB'}
{SSN : SubTypeSound SN SN'}
{MCS : catch_op_sound M M'}
{MTS : throw_op_sound M M'}
{GS : get_state_sound (S:=store (avalue+⊤)) (S':=store cvalue) M M'}
{PS : put_state_sound (S:=store (avalue+⊤)) (S':=store cvalue) M M'}
{BS : bind_sound M M'}
{RS : return_sound M M'}
{POS : plus_op_sound PO PO'}
{MOS : mult_op_sound MO MO'}
{EOS : eq_op_sound EO EO'}
{LOS : leb_op_sound LO LO'}
{NOS : neg_op_sound NO NO'}
{AOS : and_op_sound AO AO'}
{IOS : if_op_sound IO IO'}
: ∀ c : com,
γ
(generic_ceval (M:=M) (valType:=(avalue+⊤)) (natType:=natType)
(boolType:=boolType) c)
(generic_ceval (M:=M') c).

Proof. ... Qed.

Omitted are the constraints covered in the previous chapter. In addition to these con-
straints, which are placed on both the abstract monad M and the concrete monad M', we now
also have constraints that require Galois connections between the various values used by the
systems, as well as proofs of soundness of each component and all operations. The lemma
then goes on to prove that if each separate part is sound, the entire structure is sound.

Applying this lemma to the above theorem, turns that theorem into a series of smaller
subgoals. We use Coq’s automation mechanisms to automatically solve these subgoals for
us by finding the necessary instances of the typeclasses. Any missing instances are left as
subgoals to be proven interactively.

How we get Coq to automatically resolve our required instances and solve other simpler
goals is covered in the rest of this chapter.

4.3 Sound typeclasses
For every typeclass T we use that can be implemented as both an abstract and a concrete

version, we also have a T_sound typeclass that takes two instances and states that they are
sound with regards to one another. We can get Coq to automatically use instances of these
typeclasses if they have been defined. This means that proving any interpreter sound boils
down to proving its components sound.
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Due to the automation tactics of Coq, our soundness proof consists of only a single line.
That means we can easily reuse this proof. If we wish to proof another interpreter built from
the same components but composed different sound, no change at all is required. If it is
necessary to include new components, we would only have to add typeclasses for those com-
ponents to the constraints of the theorem andproof those components sound. The soundness
of the entire structure would follow automatically.

4.4 Standard automation tactics

When developing mathematical proofs it often happens that many cases are trivial to
proof. On paper, a writer can just say that the proof is left as an exercise to the reader or
remark that it is trivial. It would be helpful if, when developing a proof in a more strict proof
assistant such as Coq, we could do so as well.

Luckily, Coq comes with a variety of built-in tactics that allow us to express a similar
sentiment. One such tactic is trivial. This tactic tries to solve goals of the form X = X.
Building upon trivial is easy, which can also solve contradictions by examining the hy-
potheses in the context of a goal. The most powerful tools at our disposal are the auto and
eauto tactics, which we can customize to work with our specific project.

The automation tactics work with a Hint Database, which is a set of patterns together
with a tactic to apply if the goal matches that pattern. Through careful managing of such
a hint database, we can solve many of our lemmas automatically. Hint Extern _ . is
the most powerful way to add hints to the database. It takes a pattern for the goal to have
before executing the hint, and allows us to perform any tactics we want when this pattern
holds. Via this command we can add the custom tactics defined above to the hint database,
upgrading auto to solve proofs requiring case analysis in addition to those merely requiring
the application of lemmas.

Theorem generic_ceval_sound : ∀ c : com,
γ

(generic_ceval (M:=M)
(valType:=(avalue+⊤)) (natType:=natType)
(boolType:=boolType) c)

(generic_ceval (M:=M') c).
Proof.

induction c; cbn; eauto with soundness.
Qed.

Recall the theorem of the soundness of our interpreter, this time stated without the type-
class requirements. First, we use the induction tactic on the command that is being eval-
uated. The cbn tactic simplifies our goal, while the eauto tactic uses the soundness hint
database to solve each subgoal. The cbn tactic turns each goal into something of the form
γ ?a ?a'. Our soundness database contains every lemma of that form for all our type-
classes, which allows eauto to prove the entire interpreter sound in a single line.

Definition parity_plus (p q : parity) : parity :=
match p with
| par_even => q
| par_odd => match q with

| par_odd => par_even
| par_even => par_odd
end
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end.
Hint Unfold parity_plus : soundness.

Lemma parity_plus_sound (p q : parity) (n m : nat) : Prop :=
γ p n ->
γ q m ->
γ (parity_plus p q) (plus n m).

Proof. ... Qed.

The automation tactics can do more than just applying lemmas if the goal matches the
conclusion of the lemma. The code above contains our definition of parity_plus, which
defines addition for parities. After defining parity_plus we can also proof it sound with
regards to the addition on natural numbers. This lemma parity_plus_sound can be used
as an instance of the plus_op_sound typeclass, which is among the typeclasses used to
proof the entire interpreter sound. Even the lemma parity_plus_sound can be solved
using the automation tactics, reducing the proof burden even more.

When trying to prove lemmas regarding our definition, it helps if we can see what those
definitions actuallymean. In the above code, ifwewant to proof something aboutparity_plus
it helps ifwe canunfold the definition to see thematch statements underneath. Theautounfold
tactics helps us to do so. If we add definitions to an unfolding database, autounfold will
automatically unfold them. We can combine this behaviour with a hint added to the eauto
database to destruct any symbol occurring in a match statement, effectively automatically
performing a case analysis.

The final auto-command we will discuss is the autorewrite tactic. When proving the
correctness of our definitions, we end up with many lemmas of the form X = Y, where the
left hand side is noticeably more complicated than the right. This is especially true when
proving the monadic laws. The autorewrite tactic can take these equalities and simplify
our goals. It can recognize when these equalities are applicable better than humans can,
so this can make ostensibly daunting proofs much more manageable. Repeated application
of the monadic laws turns a monadic equation into a canonical form, so autorewrite is
especially helpful there. However, the hint database for autorewrite must be carefully
managed to avoid adding circular rewrite rules. This will result in an infinite loop when
calling the tactic.

4.5 Custom tactics
Coq allows us to define our own custom tactics using the Ltac command. This is a very

flexible approach that allows us to perform a series of tactics using a single command, or try
a variety of possible strategies to solve a goal. Custom tactics lend themselves especially well
to proving instances of our typeclasses, as those proofs tend to follow the same structure.

Ltac unmatch x :=
match x with
| context [match ?y with _ => _ end] => unmatch y
| _ => destruct x eqn:?
end.

Ltac destr :=
match goal with
| [ |- context [match ?x with _ => _ end]] => unmatch x
| H : match ?x with _ => _ end |- _ => unmatch x
| [ |- context [let (_, _) := ?x in _]] => destruct x eqn:?
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| H : (_ , _) = (_, _) |- _ => inv H
| |- _ /\ _ => split
| H : _ /\ _ |- _ => destruct H
end.

We start with several generically useful tactics. The first is the unmatch tactic. The tactic
takes a single parameter, which is supposed the name of a hypothesis in the context. If the
provided hypothesis is of the form match ?x with _ => _ end), we recursively call
unmatch on the term on which case analysis is performed. If it is of any other form, we
simply destruct the provided term. The unmatch tactic allows us to recursively perform case
analysis on match statements in the context.

The destr tactic performs a lot of checks to find instances in which we need to perform
case analysis. The first is to check if the goal contains match statements, in which case the
unmatch tactic is used. In the second case, we resolve let-bindings in the goal. If the context
contains a hypothesis regarding the equivalence of the pairs, we call the custom inv tactic
on that hypothesis. This tactic is a wrapper around the built-in inversion tactic that also
performs some cleanup. The result is two equality hypotheses for the individual elements
of the pair. Because the auto tactics from Coq also don’t destruct the logical AND opera-
tor, we add a case for those as well. We combine all these into a simplify tactic, that can
deconstruct a goal into smaller goals via case analysis and functional extensionality.

These tactics help uswhenwe are developingproofs interactively, butwe can also develop
tactics that can generate the entire proof for us. Many of our proofs are repetitive, as we have
to repeatedly write the same tactics with only some minor variations. For example, when
we define an instance of the PreorderedSet typeclass, we have to provide an ordering and
proof that the ordering is both reflexive and transitive, two lemmas that require almost the
same proof for every relation.
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Chapter 5

Related Work

In this section we’ll discuss recent advances made by others in the field of abstract interpre-
tation. We discuss previous work in the mechanization of abstract analysis, defining Galois
connections in a constructive way and decomposing interpreters via a generic interpreter.

5.1 Mechanization of Abstract Analysis
A large previous work on the mechanization of abstract analysis in Coq was Verasco, a veri-
fied static analyzer for the C programming language (Jourdan 2016). Like in this thesis Ve-
rasco only implements the γ function of Galois connections. We were inspired by Verasco’s
lifting of types to domains that included top and/or bottom. This allows for defining the
relation between the top value of an abstract domain and concrete values once and for all.

Like our interpreter, the interpreter used in Verasco is parametric in the abstract domain,
meaing the same interpreter can be used for multiple abstractions. However, because Ve-
rasco deals with a specific language, there is no need for the flexibility provided by being
able to change the monad stack. Therefore Verasco does not use a monad transformer stack.
Verasco also does not use a generic interpreter like we do and instead develop the concrete
and abstract interpreter separately.

Bertot (2008) implements and proves correct an interpreter that performs interval anal-
ysis on a toy language with loops and assignments, but no error handling. They have also
implemented their work in Coq. They prove their interpreter correct by implementingHoare
triples, annotating the input program with pre and post conditions for every statement.

Bodin, Jensen, and Schmitt (2015) describe a way to construct correct abstract semantics
so that the proof burden is minimal. They base their framework on pretty big step semantics,
which has seen little use in the field of static analysis, compared to small step semantics.
They used their framework to construct an interpreter for a language that had both loops
and exceptions.

5.2 Constructive Galois connections
The work done by Monniaux (1998) shows that the abstraction function α of Galois con-
nections cannot be formally written in constructive logic. Normally, Galois connections are
made of two functions, the other being γ. The α functionwould be responsible for transform-
ing the concrete values into the abstract values that best encompass those concrete values.
However, defining the α function in Coq requires the use of non-constructive axioms (Sergey
et al. 2013). The work of Pichardie (2005) builds on the work of Monniaux (1998) and shows
that we can circumvent this problem by stating the soundness lemmas using the concretiza-
tion function only. Because of the monotonicity that is required of these functions, any equa-
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tions containing α can be rewritten to use only γ. However, there still has been work to
circumvent this restriction.

Sergey et al. (2013) have described a method to create a monadic abstract interpreter
from concrete semantics in Haskell. Like in this thesis, they extract access to a store to a
monadic typeclass that is then instantiated in a concrete and abstract manner. By bounding
the addressable range of their store, the α function becomes computable.

Darais and Horn (2019) describe a method to define constructive Galois connections. In-
stead of defining the functions γ : A Ñ ℘ A1 and α : ℘ A1 Ñ A, they define an interpretation
function µ : A Ñ ℘ A1 and an extraction function η : A1 Ñ A. When defining Galois connec-
tions in terms of µ and η, they are able to derive an abstract interpreter via the calculational
approach, a method to calculate the abstract interpreter from the concrete interpreter. This
allows them to not only use mechanization to proof existing theorems, but also mechanize
existing proofs. Our work, in contrast, requires explicitly constructed concrete and abstract
interpreters and the calculational approach offers no benefits there.

The extraction function η by Darais and Horn (2019) is comparable to the extract func-
tions in the IsNat and IsBool typeclasses that we’ve implemented. If we moved those to
the Galois typeclass, we would have obtained something similar to the constructive Galois
connections. Because we work with explicit concrete and abstract interpreters derived from
a generic intepreter, we’ve kept our definition of a Galois connection closer to the classical
definition, albeit without an α function.

5.3 Generic interpreters
Asmentioned in the introduction, the idea for sharing a generic interpreter between the con-
crete and abstract interpreters comes from the work of Keidel, Poulsen, and Erdweg (2018).
In this paper, they propose a methodology for defining abstract and concrete interpreters
in a way that allows the soundness proof to be decomposed along the lines of the generic
interpreter.

One large difference between their work and ours lies in that we use Monads instead
of Arrows to represent effects such as stores and exceptions. Because every monad is an
arrow (Hughes 2000), we should be able to implement our work using arrows as well. Lind-
ley, Wadler, and Yallop (2011) have shown that there are more arrows than monads, but
monads are more powerful. This means that there are instances of arrows that cannot be
implemented as monads. Indeed, some of the moand transformers that we implemented re-
sulted in types that were no longer monads. However, this did not prevent us from proving
the soundness of the entire monad stack.

This difference means that we have to decompose our proof along the methods exposed
by the monad typeclass instead of the operations on arrows. Fortunately we have analogues
to the methods used by Keidel, Poulsen, and Erdweg (2018). The first is the arrow compo-
sition method >>>, which is like the bindM method of monads. Second, Keidel et al. use
the parallel composition method ***, which takes two arrows g and h and returns a com-
posed arrow g *** h. The composed arrow takes a tuple (x,y) and returns (g x, h y).
There is no analogue to this method in the standard monad typeclass, but we can simulate
the effects with repeated applications of the bindM method.

The decision by Keidel et al. to use arrows was influenced by the fact that arrows and
their operations form an algebra. This in turn means that, after defining the interpreters and
the required lemmas, the soundness proof for the concrete and abstract interpreter is auto-
matically derived. In contrast, use of monads would mean that the proof of soundness of
the interpreters would require manual effort. Fortunately our use of Coq and its automation
capabilities means that while providing this proof is still necessary, the proof will automati-
cally be constructed if we have instantiated the proper typeclasses.
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One of the problems we ran into was the definition of the bind method on our optionAT
monad. It required a join on the value wrapped inside the monad, but an instance of monad
cannot impose constraints on the wrapped value. Keidel et al. works around this by forgoing
the use of arrow transformers in this paper and defining the entire type of the interpreter
from the start. This allows for inlining the joining of the state and preserving soundness.
They solve this in their follow-up paper, where Keidel and Erdweg (2019) describe a set
of reusable components based on arrow transformers that preserve soundness. In this work,
they use a work around they call joinsecond, that joins arrowswhile taking a function that
describes how to join the carried values. By providing the join function only when needed,
they avoid placing a requirement on the types wrapped by the monad.
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Chapter 6

Conclusions and Future Work

We conclude this thesis with a summary of our results and by making a few suggestions
about possible future work.

In this thesis we mechanized the work of Keidel, Poulsen, and Erdweg (2018) and imple-
mented components that can be easily proven sound. By combining and rearranging these
components one can build interpreters for languages with varying features, such as differ-
ent ways of handling errors. New feature can be added and proven sound by encapsulating
the features in a typeclass, implementing it and adding the typeclass restrictions to the final
theorem.

Not all of the effects that we wished to implement for our interpreter could be imple-
mented asmonad transformers. Monads transformed by the non-deterministic monad trans-
former optionAT do not obey the monadic law for associativity. Luckily, the soundness
proofs do not depend on this property. In fact, while implementing themonadic laws helped
us to be certain that we implemented the monads properly, none of them were actually re-
quired to proof soundness.

In addition to its bind method not being associative, the optionAT monad transformer
is not sound when transforming an arbitrary monad. It requires that the monad that is to
be transformed can have its side effects merged or joined in some manner. In our work
we have implemented the optionAT transformer specifically for transforming the State
monad. Further work is necessary to make explicit this joinable monad requirement for all
other monads that share this property with State.

In the rest of this chapter, we make three suggestions for possible future work. First,
we discuss a possible solution to proving the soundness of the transformation of arbitrary
monads by the optionATmonad transformer. Secondly, we suggest computations that can
be expressed as monads and added to the project. Finally, we discuss possible expansions of
the abstract domains handled by this project.

Soundness of transformedmonads After transforming amonadwith theoptionAT trans-
former, it has the ability to express non-determinism, allowing us to model computations
with multiple possible execution paths, such as if statements. Abstract implementations of
this monad may be uncertain which branch of an if statement is taken. This means that in
such cases, they must approximate all possible branches, which requires that we should be
able to join the monadic results of these branches.

However, monad transformers should be able to work with any kind of monad as an
input, not just those that have such a joining ability. While we can impose requirements on
these monads when defining the soundness of the transformed monad, we have not done
sone in a generic manner in this thesis, instead opting to define the soundness of a monad
transformed by optionAT for each of our implemented monads.
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We have thought of two possible solutions for this problem. The first is a sort of widen
operation on the monad that broadens the side effects of encapsulated by the monad.

TheoptionAmonadwouldwiden into theSomeOrNoneA constructor, theStatemonad
would widen it’s carried state, and so on. The second possible solution we explored was an
alternative for the bind method. This new bind method would merge the side effects of the
”first” monad m with the side effects relevant to performing the continuation function f on
the value carried by m. For example, the standard bind method of State uses the state st
from the first monad to perform the computations in f , which results in a new state st'.
The bind method we require for a sound optionAT would have to merge these two states
instead of merely retaining st'.

Possible monads We used monad to encapsulate the abilities of our imperative language.
Via the use of the option and Statemonads we were able to model exceptions, errors and
variables. Implementing more monads will allow us to model more complex programming
languages. TheHaskell standard library comeswith eight coremonads (Figueroa, Leger, and
Fukuda 2020): identity, errors, lists, state, reader and writer, RWS and continuations. The
errormonad is like ouroption, and lists are amore general version ofoptionA, allowing for
even more possible results of the computation. Reader and Writer are able to read from and
write to a state and RWS is a combination of Reader, Writer and State. Continuations model
computations that can be paused and continued. Adding the list and continuation monad
to the project would especially increase the usefulness of the project due to the powerful
computations they represent. Examples of common language constructs that can be added
are functions and loops.

Expansions to the abstract domain The utility of abstract interpretation stems for the ab-
stract domain chosen. Interval analysis can be used to find memory issues that result from
array indices that are out of bounds, while abstracting values to just their types allows an
abstract interpreter to verify the absence of type errors. Adding more abstract domains to
the project will make it possible to write abstract interpreters that offer more feedback to the
user. Furthermore, after adding more domains it may be interesting to devise a method of
combining the results of two analyses to be able to give a more precise analysis.
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