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Abstract

Dynamically typed programming languages are prone to run-time type errors. Static
type checkers try to detect possible type errors before execution. Scheme is a
dynamically typed programming language and allows functions to return values of
multiples types, as well as higher-order functions. These features prevent common
static type checkers to perform meaningful type checking on Scheme programs.
Our implemented static analysis utilizes the approach of abstract interpretation to
perform a meaningful type analysis on Scheme programs, nonetheless. Instead
of declaring fixed types to functions of a program, our type analysis analyzes the
application of each function individually. Additionally our implementation includes a
control-flow analysis that allows the analysis of programs with complex control-flow
caused by e.g. higher-order functions. We tested the implementation on 10 Scheme
benchmark programs, being able prove 8 of them type-safe. The here presented
type and control-flow analysis is capable to soundly analyze programs with complex
control-flow, however this comes at the cost of a high complexity and a reduction in
precision.

v



Abstract (German)

Dynamisch getypte Programmiersprachen sind anfällig für Typfehler zur Laufzeit.
Statische Typchecker versuchen Typfehler vor der Ausführung eines Programmes
zu entdecken. Scheme ist eine dynamisch getypte Programmiersprache und erlaubt
Funktionen Werte mehrerer Typen zurückzugeben, sowie die Nutzung von Funktio-
nen höherer Ordnung. Diese Eigenschaften verhindern es statischen Typecheckern
aussagekräftig Scheme Programme zu typchecken. Unsere implementierte statische
Analyse nutzt die Methode der abstrakten Interpretation, um dennoch eine sinnhafte
Typanalyse für Scheme Programme durchführen zu können. Anstatt Funktionen feste
Typen zu erteilen, wird jede Anwendung einer jeden Funktion einzeln analysiert.
Zusätzlich inkludiert unsere Analyse eine Kontrollflussanalyse, die die Analyse von
Programmen mit einem komplexen Kontrollfluss, welcher bspw. von Funktionen
höhere Ordnung verursacht wird, ermöglicht. Wir haben unsere Analyse für 10
Scheme Benchmark Programme getestet und waren imstande für 8 Typsicherheit zu
garantieren. Die hier implementierte Typ- und Kontrollflussanalyse kann Programme
mit einem komplexen Kontrollfluss korrekt analysieren, dies ist jedoch verbunden
mit einer hohen Komplexität und einer Verringerung der Präzision.
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1Introduction

Software development is a complex process. Mistake are inevitable. Most published
software has bugs and it has been demonstrated many times how costly they can
become. There are several techniques to reduce the amount of bugs in software,
the most common of which is testing. Quality control by testing has two main
drawbacks. First, testing is often performed late in the production cycle, when costs
of removing bugs have risen a lot since the beginning. Second, "testing can only
prove the existence of bugs and not their absence" [1], which is the reason why test
coverage should be as high as possible. However, it is impossible to cover every
execution path of a non-trivial program. Static analyses provide a way of doing
just that. In contrast to their dynamic counterpart, that prevent errors occurring
at run-time, static analyses analyze programs before their execution. Therefore, a
large benefit of static analyses is that they analyze source code and can be applied
incrementally, allowing application in every state of program development, being
useful often times a lot earlier in the process than testing. Another advantage is that
in order to perform a sound analysis, static analyses conclude over the execution of
a program in any possible environment, guaranteeing complete coverage.

This work presents the implementation of a static type and control-flow analysis for
Scheme. Scheme is a dynamically typed programming language, not requiring ex-
plicit type annotations in its source code. Dynamically typed programming languages
are in danger of producing type errors at run-time. Our analysis prevents type errors
from occurring, by means of abstract static analysis. It mainly differs from common
static type checkers by instead of analyzing functions once and declaring it a type, it
analyzes every function in its actual application context. Hence, sound static type
checking often performs a very conservative analysis. Consider the following Scheme
program:

(define (check x)
(if (list? x) 0

(if (number? x) 1
(if (not (list? x)) 0

(if (integer? x) #t
(if (boolean? x) '(0) #f))))))

A common static type checker would return three different types, integer, boolean
and list, as the return type of the function check. This is a sound analysis result,
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however not particular precise. Anytime this function is used in a context in which
an integer is expected, e.g. integer addition, a type checker would report a type error.
The approach developed in this work is able to produce significantly more precise
results. Each application of check is analyzed individually. Instead of assigning
a type to check by analyzing its body, our analysis considers every application of
check anew. This means, instead of declaring every application of check in a context
where integers are expected a type error, our analysis evaluates check for the exact
arguments given in that context and only then decides whether type-safety can be
guaranteed. In consequence, our analysis is able to detect what a type checker
cannot. It realizes the last two if-statement can never be executed. By using the
approach of abstract static analysis our analysis considers every possible execution
path for a given program in which those non-reachable statements are not included.
Therefore, our analysis detects that check’s only return type is integer, producing a
much more precise result than a standard static type checker.

We can see that by considering each application of a function individually, more
precise results can be achieved for our type analysis. However, statically gaining
information about the arguments each function is parsed is not trivial. Analyzing the
so called data-flow is particularly hard for programming languages such as Scheme,
which support higher-order functions. A classic example for such a case, which is
also discussed in Principles of Program Analysis by Nielson et al. [6], is the following
Scheme program:

(let ((f (lambda (x) (x 1)))
(g (lambda (y) (+ y 2)))
(h (lambda (z) (+ z 3))))

(+ (f g) (f h)))

f is bound to a lambda-expression that applies a function parsed to it as argument.
Statically analyzing the data-flow is not easily possible because the function that is
parsed to the lambda-expression is only certain at run-time. Control-flow analysis
are able to analyze the data-flow nonetheless, even though precision has to be
sacrificed. It computes for each subexpression of a program a set of functions
that they can evaluate to. In this case f can be applied either to g or h, which
in turn means the argument x of the lambda-expression f can evaluate to either
(lambda (y) (+ y 2)) or (lambda (z) (+ z 3)). To guarantee a sound result
both possibilities have to be accounted for when analyzing the so called control-flow
of this program.

2 Chapter 1 Introduction



Figure 1.1: Overview Interpreters

Generic Interpreter

Abstract InterpreterConcrete Interpreter Abstract Interpreter

We have implemented our analysis in the Sturdy [5] framework. The main idea
of the framework is to capture similarities between the concrete and abstract in-
terpretation of programs. Similarities between them are explicitly implemented by
a generic interpreter that solely operates on interfaces that concrete and abstract
interpreters implement. The purpose of our concrete interpreter is to implement
the concrete evaluation of a program by instantiating the interfaces defined in our
generic interpreter. The purpose of our abstract interpreter is to perform a type and
a control-flow analysis by means of abstract interpretation by instantiating the same
generic instances as the concrete interpreter [Figure 1.1].

Sturdy also provides already implemented features that can be reused. Several
benefits can be gained by this approach to implementing abstract analyses. Proving
abstract interpreters sound is a difficult task prone to errors. Soundness proofs can
become easier, when similarities between concrete and abstract interpreters are
explicitly depicted in the generic interpreter. The ability to reuse structure that has
already been proven sound, allows for compositional soundness proofs [5], which
can further reduce the prove effort. Another benefit of the framework is that adding
an abstract interpreter for a language that already has a working concrete, generic
and abstract interpreter can be done with much less effort, than implementing an
abstract interpreter from scratch.
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2A Generic and Concrete
Interpreter for Scheme

In this section we will discuss the generic interpreter, which captures similarities
between concrete and abstract interpreters and therefore is a core part of any analysis
implemented in Sturdy [5]. To better demonstrate the actual functionality of this
generic interpreter, we present the concrete interpreter along the way. The generic
interpreter operates on interfaces that are implemented by the concrete interpreter
as well as the abstract interpreter. The most relevant interfaces are those that provide
the data structures and operations for stores, environments, addresses and values.
As depicted in Figure 2.1, the concrete and abstract interpreter implement these
interfaces with their own instances respectively.

Figure 2.1: Detailed Overview Interpreters
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Sturdy uses arrows [3] to describe effectful computations. They are also used in
the generic interpreter, e.g. lit :: c Literal v describes a computation that
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consumes Literal as input and produces a parametric type v as output. The
concrete or abstract interpreters will later instantiate v, representing their value
domain respectively. In order to express similarities in their domains nonetheless, v
has to be parametric.

Listing 2.1: Generic and Concrete Literal Expressions

Generic Implementations

data Expr = Lit Literal Label | ...
data Literal = Number Int | Float Double | Bool Bool | ...
eval = proc e -> case e of

Lit x l -> lit -< x

Generic Interfaces

lit :: c Literal v

Concrete Instances

lit = proc x -> case x of
Number n -> returnA -< IntVal n
Float n -> returnA -< FloatVal n
Ratio n -> returnA -< RatioVal n
Bool n -> returnA -< BoolVal n
Char n -> returnA -< CharVal n
String n -> returnA -< StringVal n
Quote n -> returnA -< evalQuote n
_ -> fail -< "(lit): unexpected literal"

To demonstrate the architecture and the interactions between the generic and
concrete interpreter we start by discussing literals, which present the most basic
syntactic elements of Scheme [Listing 2.1]. The generic interpreter first encounters
the literal in form of an expression. A Lit-expression contains a Literal type, here
represented by x that corresponds to any of Scheme’s basic types, excluding lists
and procedures. Every expression also contains an unique label, here represented
by l. The interface specified by the generic interpreter defines a simple arrow
computation that expects an element of type Literal as its input and returns an
element of a parametric type v as its output. The concrete interpreter determines v
to represent the concrete value domain. When the generic interpreter encounters
a Lit-expression, it uses the lit-interface to evaluate the expression. As literals
are already in their most basic form, no further evaluation has to be performed
and x can be parsed directly to lit as input. Finally, the concrete interpreter
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determines the actual evaluation by instantiating the predefined interfaces of the
generic interpreter.

The lit-interface specifies an arrow computation as its type. Arrows can be con-
structed by using proc, which is similar to a lambda, but instead of creating a
function it creates an arrow. Therefore, (proc x -> case x of ...) creates an
arrow that performs a pattern match on the input x, which in our case will be an
element of type Literal. returnA and fail are arrow computations themselves.
returnA is the arrow representation of the identity function and fail transforms
the string it is given as input into a value that matches the respective specification
for v. Much like monads it is necessary to end a proc-block with a computation
and not a binding. Putting it together the lit-interface is implemented by a simple
pattern match on the input of the computation. Every Literal is evaluated to their
corresponding representation in the concrete value domain. Any unexpected input
will result in a failure.

Listing 2.2: Generic and Concrete If Expressions

Generic Implementations

data Expr = If Expr Expr Expr Label | ...
eval :: c [Expr] v -> c Expr v
eval run = proc e -> case e of

If e1 e2 e3 l -> do
v1 <- run -< [e1]
if_ run run -< (v1, ([e2], [e3]))

run_ :: c [Expr] v
run_ = fix $ \run -> proc es -> case es of
...

Generic Interfaces

if_ :: c x z -> c y z -> c (v, (x, y)) z

Concrete Instances

if_ run1 run2 = proc (v1, (e2, e3)) -> case v1 of
BoolVal False -> run2 -< e3
_ -> run1 -< e2

Another simple but core part of most programming languages are if-expressions
[Listing 2.2]. Expressions of type If have three sub-expressions and are, as every
expression, uniquely identified by a label l. If-expressions are evaluated by the
eval function of the generic interpreter. eval is a computation that takes an arrow
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computation c [Expr] v as argument, an expression Expr as input and returns
an element of the parametric type v. Other than eval, the generic interpreter
contains another function run_ that takes part in the evaluation of expressions.
run_ serves as a wrapper and processes the input Scheme program, which has been
preprocessed to a list of expressions. Single expressions are then parsed to eval
for further processing. run_ evaluates each expression in order, beginning with the
first and returning the result of the last expression parsed to eval. The evaluation
of e.g. e1 from the If-expression takes a seemingly indirect path to evaluation.
Instead of directly parsing e1 to eval, it is wrapped to a list and parsed to a run_
arrow computation that is specially parsed to eval as argument. This indirection
is necessary, because the fix-point algorithms that determine over termination and
non-termination are parametric in their type and need consistent control over every
expression that might diverge and create non-termination. To guarantee consistency
the fix-point is only calculated over run_, with the consequence that eval is parsed
the arrow computation run of type run_ over which the fix-point is calculated and
only ever uses it to evaluate further expressions.

The if_-interface specified in the generic interpreter takes two arrow computations
as arguments c x z and c y z and expects v,(x,y) as input. The generic interpreter
first evaluates e1 to a value. This is the conditional that decides whether the if-
or else-branch is executed. Hence, e2 and e3 represent the if- and else-branches.
For the moment they are not evaluated, instead two run-objects are parsed to if_
as arguments that will later evaluate e2 or e3 in the interpreters on demand. The
concrete if_-instance decides how evaluation is to be continued. Scheme’s language
standard [7] determines that every value that is not explicitly #f is considered #t
and causes the if-branch to be evaluated. Therefore, only if the conditional matches
BoolVal False the else-branch is evaluated by providing run2 with the input e3.
In any other cases the if-branch is evaluated by providing run1 with the input e2.
Further evaluation is now again performed by the generic interpreter.

A language feature that is more exclusive to Scheme than if-statements, are let-
expressions. Scheme’s let-expressions introduce bindings to a local scope in which
their expression-body is evaluated. let can have multiple bindings each consisting
of a variable as well as an expression. Aside from let, Scheme supports let*
and letrec, which differ in the order in which bindings are evaluated and added
to the local environment. Bindings in let are practically evaluated at the same
time, that is no information provided by any other bindings is considered when
evaluating an individual binding. Bindings in let* are evaluated one after the other,
that is information from previous bindings can be considered when evaluating a
binding occurring after them, making expressions such as (let* ((x 2) (y x)) y)
valid. Bindings in letrec have the same order of evaluation as bindings in let*,
with the addition that for each binding a location in the environment is allocated
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before the evaluation of the bindings begins. This enables mutual recursion of
bindings, because closures in bindings can capture an environment in which all the
other bindings, including itself are already present. letrec allows e.g. following
expression: (letrec ((y (lambda () x)) (x (lambda () y))) y). However, as
the order in which bindings are evaluated is still relevant, expressions such as:
(letrec ((x y) (y 2)) x) are not allowed. Fortunately we only need to natively
implement let- and letrec-expressions. let*-expressions can be desugared by
creating for each binding in the expression an individual let-expression and nesting
the created let-expression in the order of the bindings’ occurrence. The deepest
nested let-expression will carry the body of the original let*-expression.

Here we will discuss the implemented representations of let- and letrec-expressions,
beginning with let [Listing 2.3]. Let-expressions consist of bnds, which is a list of
tuples consisting of variable names and their associated expression, and body, which
is a list of expressions. The evaluation of Let-expressions relies on three different
interfaces alloc, write and extend. Before body can be evaluated all bindings have
to be added to a local environment. The function evalBindings evaluates each
expression within bnds to a value, allocates an address, using the alloc-interface
and adds the binding of type (Addr,Val) to the store, using the write-interface.
evalBindings returns a list of tuples [(Var, Addr)], consisting of variable names
and their associated addresses. Env.extend' is responsible for adding these bindings
to the environment, it is a function that simply wraps around the extend-interface
to allow the extension of a list of bindings, instead of only single ones. As the
environment is only locally scoped, extend is parsed a computation that is to be
computed under the extended environment, as well as its corresponding input. In
this case run is added as computation and body as the computation’s input.

The concrete domain represents addresses as simple integers. alloc uses Sturdy’s
State instance [4] to keep a counter nextAddr, which starts at 0 and is increased by 1
whenever an address is allocated. The concrete environment is realized as a mapping
from variable names to integers type Env = Map Var Int and the concrete store as
a mapping from integers to values type Store = Map Int Val. The environment
and store are threaded through computations and kept consistent using the Reader,
as well as again the State instance provided by the Sturdy framework. Therefore,
updating the store with a new binding becomes quite simple. Using State.get a
current version of the store can be retrieved, and using State.put a store, which
has been updated can be set as the new current store. Extending the environment
follows the same example, Reader.ask retrieves a current environment, which can
then be extended with a binding. Reader.local performs the computation that is
parsed to it as argument, here run, under the extended environment that has been
parsed, using x as its input, which is body for our Let-expression.
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Listing 2.3: Generic and Concrete Let Expressions

Generic Implementations

data Expr = Let [(Text, Expr)] [Expr] Label | ...
eval :: c [Expr] v -> c Expr v
eval run = proc e -> case e of

Let bnds body -> do
vs <- evalBindings -< bnds
Env.extend' run -< (vs,body)

where
evalBindings = proc bnds -> case bnds of

[] -> returnA -< []
(var,expr) : bnds' -> do

val <- run -< [expr]
addr <- alloc -< var
write -< (addr,val)
vs <- evalBindings -< bnds'
returnA -< (var,addr) : vs

Generic Interfaces

alloc :: c Text addr
write :: c (addr,val) ()
extend :: c x y -> c (var,addr,x) y

Concrete Instances

alloc = proc _ -> do
nextAddr <- get -< ()
put -< nextAddr + 1
returnA -< nextAddr

write = proc (addr, val) -> do
store <- State.get -< ()
State.put -< Map.insert addr val store

extend run = proc (var,addr,x) -> do
env <- Reader.ask -< ()
Reader.local run -< (Map.insert var addr env, x)

LetRec-expressions are implemented very similarly to Let-expressions [Listing 2.4].
They use exactly the same interfaces and only differentiate in their generic imple-
mentation. During the evaluation of LetRec-expressions, the generic interpreter first
allocates an address for every binding and matches them with its corresponding
variable name, summarizing the bindings that have to be added to the environment
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before the actual evaluation of the bindings in envbnds. strbnds summarizes the
bindings that now have to be evaluated after the environment has been extended
with envbnds. The evaluation happens in evalBindings’ where each expression is
evaluated to a value and then, paired with the respective address, added to the store.
This is repeated for every expression in bnds. When no more bindings have to be
evaluated evalBindings’ finally evaluates LetRec’s body by parsing it as input to
run

Listing 2.4: Generic LetRec Expressions

Generic Implementations

data Expr = LetRec [(Text, Expr)] [Expr] Label | ...
eval :: c [Expr] v -> c Expr v
eval run = proc e -> case e of

LetRec bnds body l -> do
addrs <- map alloc -< [(var)|(var,_) <- bnds]
let envbnds = [(var,addr)|((var,_),addr) <- zip bnds addrs]
let strbnds = [(addr,expr)|((_,expr),addr) <- zip bnds addrs]
Env.extend' evalBindings' -< (envbnds,(storebnds,body))

where
evalBindings' = proc (bnds,body) -> case bnds of

[] -> run -< body
(addr,expr) : bnds' -> do

val <- run -< [expr]
write -< (addr,val)
evalBindings' -< (bnds',body)

Generic Interfaces

alloc :: c Text addr
write :: c (addr,val) ()
extend :: c x y -> c (var,addr,x) y

As already mentioned when discussing literals, closures and lists are not represented
by Literal-expressions, but are implemented individually. Nonetheless, both are
part of the concrete and abstract value domain. We will continue by discussing first
closures and then lists.

Closures occur when lambda-expressions are evaluated. Our representation of
lambda-expressions consists of a list of variable names, a list of expressions and of
course a label [Listing 2.5]. Lam-expressions are evaluated by the eval function of
the generic interpreter, which uses the closure-interface. The closure-interface
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is an arrow computation that expects an expression as argument and returns an
element cls. cls is a parametric closure value that will be declared by the concrete
and abstract interpreters to depict their respective representation of closure values.
The concrete interpreter instantiates cls with type Cls = Closure Expr Env. The
closure-interface is instantiated by an arrow computation that uses Sturdy’s Reader
instance to retrieve the environment that is current at the point of evaluation and
captures it together with the Lam-expression, which originally was evaluated.

The application of lambdas is represented by the App-expression. It consists of an
expression, which will be a Lam-expression, a list of expressions, which are the
arguments and again a label. The generic interpreter evaluates App-expressions by
first evaluating the Lam-expression, here depicted by e1, to a closure value, depicted
by fun. Then the arguments are evaluated by parsing them one by one to the run
arrow computation that is parsed to eval as argument. The closure is finally applied
by the apply-interface. This interface takes an arrow computation c (expr,args) v
as argument, (cls,args) as input and returns a parametric type v, which will be
instantiated by the respective interpreters’ value domain. The generic interpreter
lastly passes the evaluated closure fun and arguments args to the apply-interface,
as well as a function applyClosure.

The concrete interpreter instantiates the apply-interface by using Sturdy’s Reader
instance and its local-function to set the environment the closure captures as the cur-
rent environment. In this environment the parsed arrow computation applyClosure
is called with the expression of the closure, as well as the arguments. applyClosure
checks that the expression indeed is a Lam-expression and that the amount of parsed
arguments matches the amount required by the Lam-expression. If they match,
addresses are allocated for all variables of the Lam-expression and all arguments
bound to the corresponding variable are written to the store. Lastly the extend’-
function is used again to add the list of bindings to the environment. An expressions
Apply body l, which simply evaluates the body of the Lam-expression in the just
constructed environment, is parsed to extend’ to be the input of the also parsed run
arrow computation. It is important to note that instead of just parsing the body itself,
a special expression is created. This is necessary because the fix-point algorithms are
using functions of this kind as a reference to recognise recursion, as this is the only
point in any evaluation that recursion can occur.
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Listing 2.5: Generic and Concrete Lambda and Application Expressions

Generic Implementations

data Expr = Lam [Text] [Expr] Label | App Expr [Expr] Label
| Apply [Expr] Label | ...

eval :: c [Expr] v -> c Expr v
eval run = proc e -> case e of

Lam xs es l -> closure -< Lam xs es l
App e1 e2 l -> do

fun <- run -< [e1]
args <- map run -< chunksOf 1 e2
apply applyClosure -< (fun, args)

Apply es l -> run -< es
where

applyClosure = proc (e, args) -> case e of
Lam xs body l ->

if eqLength xs args
then do

addrs <- map alloc -< xs
map write -< zip addrs args
Env.extend' run -< (zip xs addrs, [Apply body l])

else fail -< "Mismatching amount of arguments"
_ -> fail -< "Found unexpected epxression in closure"

Generic Interfaces

closure :: c expr cls
apply :: c (expr,args) v -> c (cls,args) v
alloc :: c Text addr
write :: c (addr,val) ()
extend :: c x v -> c (var,addr,x) v

Concrete Instances

type Cls = Closure Expr Env
closure = proc expr -> do

env <- Reader.ask -< ()
returnA -< Closure expr env

apply applyClosure = proc (Closure expr env,args) ->
Reader.local applyClosure -< (env,(expr,args))

Lists in Scheme are tail-recursive, that is they consist of a concrete head value and a
tail value that itself is a list, or in case of a list of length one, the empty list. There
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exist two expressions that are needed to represent this structure in our interpreters,
Nil and Cons [Listing 2.6]. Every list that has to be evaluated is of the following
form (Cons x (Cons y (Cons z Nil))). The generic interpreter first evaluates the
head element of Cons-expressions and then the tail element. Because the tail element
is itself a list, this will cause a recursive evaluation until an expression (Cons x Nil)
is reached. Nil-expressions are evaluated by the nil_-interface, which only needs
a Label and returns a parametric type v. When the recursive call is finished the
generic interpreter passes the evaluated head and tail values, along with the label of
the expressions they originate from, to the cons_-interface.

Listing 2.6: Generic and Concrete List Expressions

Generic Implementations

data Expr = Nil Label | Cons Expr Expr Label | ...
eval :: c [Expr] v -> c Expr v
eval run = proc e -> case e of

Nil l -> nil_ -< l
Cons x xs l -> do

v <- run -< [x]
vs <- run -< [xs]
cons_ -< ((v,label x),(vs, label xs))

Generic Interfaces

nil_ :: c Label v
cons_ :: c ((v, Label), (v, Label)) v

Concrete Instances

data Val = ListVal Addr Addr | EmptyList | ...
nil_ = proc _ ->

returnA -< EmptyList
cons_ = proc ((v1,_),(v2,_)) -> do

a1 <- alloc -< ""
a2 <- alloc -< ""
write -< (a1,v1)
write -< (a2,v2)
returnA -< ListVal a1 a2

The concrete implementation of the nil_-interface simply returns a value EmptyList
that represents the empty list. The concrete implementation of the cons_-interface
is perhaps somewhat unexpected. Instead of directly representing the head and tale
values they are represented by addresses, which are specifically allocated for each
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value and written to the store. This is not entirely necessary for the concrete evalua-
tion, however it reduces the effort when implementing the abstract representation of
lists. The here discussed representation of lists can lead to very large stores, which
is the reason why any figure and example in this work uses Scheme’s high-level
representation for lists.
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3An Abstract Interpreter for
Scheme

In this section we discuss the abstract interpreter, which implements the generic
interpreter to perform a type and control-flow analysis. We will begin by discussing
its abstract domain. Our abstract domain has to fulfill following properties, it has to
abstract the concrete domain to a finite domain, and it has to be sufficiently precise
to allow conclusion over the type-safety of a program in a meaningful way.

An important property of abstract interpreters is the guarantee of termination even
for non-terminating programs. This can be ensured by keeping the abstract domain
finite and is the reason most concrete values are abstracted from and lose information
in the abstract value domain. Consider the abstract implementation of the evaluation
of literals in Listing 3.1.

Listing 3.1: Abstract Literal Expressions

Generic Interfaces

lit :: c Literal v

Abstract Instances

lit = proc x -> returnA -< case x of
Number _ -> NumVal IntVal
Float _ -> NumVal FloatVal
Ratio _ -> Bottom
Bool True -> BoolVal B.True
Bool False -> BoolVal B.False
Char _ -> StringVal
String _ -> StringVal
Quote (Symbol sym) -> QuoteVal (singleton sym)
_ -> Bottom

Just as the concrete interpreter, the abstract interpreter instantiates the lit-interface
defined by the generic interpreter. However, the domain that literals are evaluated
to has changed. The concrete values of Number literals are not regarded anymore.
Instead they are abstracted to a more general type NumVal IntVal. The same can
be noted for all other literals. Float is evaluated to NumVal FloatVal. Bool and
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Quote are the only literals that keep their values in the abstract value domain. It
is important to sustain as much precision as possible, even when it is not relevant
to know e.g. whether a value is true or false to determine that it is a boolean, we
will see that the precision of e.g. if-statements heavily relies on the precision of its
conditional, which most of time is represented by a boolean.

Ensuring a finite abstract domain, does not only restrict itself to abstract values. The
abstract environment, store, and set of addresses have to be finite as well. Addresses
in the concrete interpreter are represented by an infinite set of integers. Every time
a variable needs to be added to the store a fresh address is allocated. This can no
longer be done when ensuring a finite domain.

Abstract address allocation is implemented by instantiating the alloc-interface of
the generic interpreter. Addresses that are allocated for variables consist of a tuple
of their variable name and their context [Listing 3.2]. The context is a string of the
history of expression-labels that led to the allocation of the variable, with the label
of the latest expression that was evaluated being the first element in the string. The
length of the call-string is determined by the grade k of the control-flow analysis.
That is for k = 0 the length of the call-string is 0 and does not hold any information
over the call context, for k = 1 it holds information for the most recent call context.
The context can be retrieved by using the Ctx [4] instance, which is predefined in
Sturdy’s library.

Listing 3.2: Abstract Allocation Strategy

Generic Interfaces

alloc :: c Text addr

Abstract Instances

data Addr = VarA (Text,Ctx) | ...
alloc = proc var -> do

ctx <- Ctx.askContext @Ctx -< ()
returnA -< VarA (var,ctx)

It can be easily reasoned why this change to address allocation guarantees the
amount of possible addresses to be finite. The amount of unique variable names,
as well as the amount of expressions are finite in any program. The set of possible
contexts is finite as well, as the contexts are bounded by k and their elements are the
labels of expressions of which there can only be as many as there are expressions.
Therefore, the set of tuples consisting of variable names and contexts is finite.
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Of course limiting the set of addresses, enables duplicate allocation of addresses.
Hence, it is possible to allocate the same address for two different variables. As an
abstract interpreter is only sound if it over-approximates the concrete interpreter,
bindings with the same address cannot simply overwrite each other in the store.
This problem is resolved by introducing a monotone stone, which can only grow
and, instead of loosing information, only looses precision [9]. Because the store
never loses information, if a value is written to an address that has already been
allocated, the values are joined and stored as their joined value. This sacrifice is
necessary, as the allocation strategy is the most crucial feature to allow termination
of non-terminating programs.

Listing 3.3: Widening Operator

instance Complete Val where
Bottom t x = x
x t Bottom = x
StringVal t StringVal = StringVal
NumVal n1 t NumVal n2 = NumVal (n1 t n2)
...
_ t _ = Top

instance Complete Number where
IntVal t IntVal = IntVal
FloatVal t FloatVal = FloatVal
_ t _ = NumTop

Joining values is performed by a widening operator t that functions as a least-
upper-bound for the defined abstract values and depicts our lattice [Listing 3.3].
Bottom is the lowest element in our lattice and every element joined with it results
in itself. Another trivial case are values of type StringVal that, because strings
are naively abstracted, joined with itself result in StringVal without any real loss
of precision, as there was none to begin with. Values of all other types, joined
with a value of the same type respectively, result in themselves with their sub-types
joined. Values of type NumVal IntVal as well as NumVal FloatVal, each joined with
the same value, will result in themselves and do not loose any precision. Joining
any other combination of elements of type NumVal results in NumVal NumTop, e.g.
NumVal IntVal t NumVal FloatVal results in NumVal NumTop.

Values of type Top or values of two different types are joined to Top. Top represents
any possible value of the lattice. Joining values to Top introduces a great amount
of imprecision, as most operations that are parsed Top as an argument will result
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in Top as well. Therefore, once a Top value has been introduced, the analysis of a
given Scheme program will almost always result in Top.

Consider the following concrete and abstract evaluation of a trivial Scheme program,
which demonstrates the use of the monotone store [Example 3.1].

Example 3.1: Simple Concrete and Abstract Evaluation

(define x 2)
(set! x 2.3)
x

Concrete Trace

Environment
[ ]

Store
[ ]

(define x 2)

[x 7→ #0] [#0 7→ IntVal 2]
(set! x 2.3)

[x 7→ #0] [#0 7→ FloatVal 2.3]
x
FloatVal 2.3

Abstract Trace

[ ] [ ]
(define x 2)

[x 7→ (x,[ ])] [(x,[ ]) 7→ NumVal IntVal]
(set! x 2.3)

[x 7→ (x,[ ])] [(x,[ ]) 7→ NumVal NumTop]
x
NumVal NumTop

The concrete evaluation of the program returns FloatVal 2.3, the abstract eval-
uation however returns NumVal NumTop. The abstract intepreter first evaluates
(define x 2). For this the interpreter evaluates 2 to NumVal IntVal, allocates
an address for x and writes NumVal IntVal to that address. Then it evaluates
(set! x 2.3) by evaluating 2.3 to NumVal FloatVal, looking up the address for
x in the current environment and its corresponding value in the store and writing
the joined value of the looked up value and NumVal FloatVal to the address of x
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in the store. The monotone store obviously causes a significant loss of precision,
however it is, along with the allocation strategy the most important features to not
only guarantee termination of non-terminating programs, but also to guarantee a
faster computation of the fixed-point of a program.

If we remember from the section before closures and lists are treated specially, this
is also the case for their joining. When joining closures it has to be guaranteed that
the body of each closure can be evaluated in its respective environment. If a joined
closure value is evaluated, each body is evaluated to a value that has to be joined.
Fortunately Sturdy includes a Closure instance that provides a data structure, which
performs all necessary operations, including the implementation of the associated
closure- and apply-interfaces.

Listing 3.4: Abstract List Expressions

Generic Interfaces

nil_ :: c Label v
cons_ :: c ((v, Label), (v, Label)) v

Abstract Instances

data Addr = LabelA (Label,Ctx) | ...
data Val = ListVal List | ...
data List = Nil | Cons (Set Addr) (Set Addr)

| ConsNil (Set Addr) (Set Addr)
nil_ = proc _ -> returnA -< ListVal Nil
cons_ = proc ((v1,l1),(v2,l2)) -> do

a1 <- allocLabel -< l1
a2 <- allocLabel -< l2
write -< (a1,v1)
write -< (a2,v2)
returnA -< ListVal (Cons (singleton a1) (singleton a2))

allocLabel = proc l -> do
ctx <- Ctx.askContext @Ctx -< ()
returnA -< LabelA (l,ctx)

Before discussing the joining of lists we have to discuss their abstract representation
[Listing 3.4]. We will start by explaining why it is not possible to use a more
intuitive representation such as e.g. data List = Nil | Cons Val Val | ....
When adding this kind of value to out lattice, we introduce the possibility of creating
an infinite lattice, by constructing infinite large lists. Hence, we cannot allow any
element of type Val to contain elements of type Val. We abstract lists by introducing
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the indirection of addresses. For each head and tail value we allocate addresses
and write them to the store. The abstract interpreter uses a special type of address,
which consists of a label and the context, instead of a variable name and the context.
This is necessary since lists do not have access to variable names. Nonetheless,
these addresses are a finite set, because labels as well as contexts are finite sets as
well. The abstract interpreters’ implementation of the nil_- and cons_-interface is
very similar to the concrete implementation, mainly differing in the way addresses
are allocated. Another smaller difference is that abstract lists do not have a single
address as their head and tail value, but a set. This allows us to remain a higher
precision when joining two lists.

Listing 3.5: Widening Operator Lists

instance Complete List where
Nil t Nil = Nil
Cons x1 x2 t Cons y1 y2 = Cons (x1 t y1) (x2 t y2)
ConsNil x1 x2 t ConsNil y1 y2 = ConsNil (x1 t y1) (x2 t y2)

Cons x1 x2 t Nil = ConsNil x1 x2
Nil t Cons x1 x2 = ConsNil x1 x2
ConsNil x1 x2 t Cons y1 y2 = ConsNil (x1 t y1) (x2 t y2)
Cons x1 x2 t ConsNil y1 y2 = ConsNil (x1 t y1) (x2 t y2)
Nil t ConsNil y1 y2 = ConsNil y1 y2
ConsNil y1 y2 t Nil = ConsNil y1 y2

Coming back to the widening operator and its application to lists [Listing 3.5]. Nil,
which represents the empty list, Cons which represents common lists and ConsNil,
which represents either Nil or Cons, joined with an element of the same type
respectively, result in themselves with their sub-types joined. For Cons and ConsNil
this means that the head, as well as the tail set of addresses are joined. All other
possible combinations result in ConsNil with their sub-types joined if there are any
that is.

With the changed representation of addresses and the adjusted allocation strategy our
abstract domain is finite. So how do we ensure the termination of non-terminating
programs? Sturdy provides several fix-point algorithms that determine a point in the
evaluation of a program after which it is not going to change any further. All operate
in a slightly different way, however they all terminate, whenever the same expression
is evaluated twice under the same context, which is represented by the abstract
environment and store. Consider the following concrete and abstract evaluation
traces of a non-terminating recursive Scheme program [Example 3.2].
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Example 3.2: Concrete and Abstract Evaluation of Non-terminating Recursion

(define (rec x) (rec 1))
(rec 1)

Concrete Trace

Environment
[ ]

Store
[ ]

(define (rec x) (rec x))

[rec 7→ #0] [#0 7→ {λ(x)(rec x),[rec 7→ #0]}]
(rec 1)

[rec 7→ #0,
x 7→ #1]

[#0 7→ {λ(x)(rec x),[rec 7→ #0]},
#1 7→ 1]

(rec 1)

[rec 7→ #0,
x 7→ #2]

[#0 7→ {λ(x)(rec x),[rec 7→ #0]},
#1 7→ 1, #2 7→ 1]

(rec 1)
...

Abstract Trace

[ ] [ ]
(define (rec x) (rec x))

[rec 7→ (rec,[ ])] [(rec,[ ]) 7→ {λ(x)(rec x),[rec 7→ (rec,[ ])]}]
(rec 1)

[rec 7→ (rec,[ ]),
x 7→ (x,[ ])]

[(rec,[ ]) 7→ {λ(x)(rec x),[rec 7→ (rec,[ ])]},
(x,[ ]) 7→ NumVal IntVal]

(rec 1)

[rec 7→ (rec, [ ]),
x 7→ (x,[ ])]

[(rec,[ ]) 7→ {λ(x)(rec x),[rec 7→ (rec,[ ])]},
(x,[ ]) 7→ NumVal IntVal]

(rec 1)
NonTerminating

The concrete evaluation of this program will of course never terminate. As already
discussed, any time a variable needs to be allocated a new address is provided. The
concrete evaluation trace shows that (rec 1) will never be evaluated under the
same environment and store, because a new binding is added for every recursive call.
However, when considering the abstract evaluation trace, (rec 1) is evaluated under
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the same environment and store, in which case the fix-point algorithm terminates
evaluation and sets the result to NonTerminating.

In general the purpose of fix-point algorithms is not to terminate non-terminating
programs, but to calculate the least-fixed of a program. This is not only necessary for
non-terminating programs, but in particular for programs with loops and recursions.
Abstract interpretation aims to over-approximate concrete evaluation of a program.
Before discussing an example we have to introduce the abstract evaluation of if-
expressions.

Listing 3.6: Abstract If Expressions

Generic Interfaces

if_ :: c x z -> c y z -> c (v, (x, y)) z

Abstract Instances

if_ run1 run2 = proc (v,(e1,e2)) -> case v of
BoolVal B.False -> run2 -< e2
BoolVal B.Top -> (run1 -< e1) <t> (run2 -< e2)
Top -> (run1 -< e1) <t> (run2 -< e2)
_ -> run1 -< e1

Abstract If-expressions implement the same generic interface as their concrete coun-
terpart and therefore are parsed the exact same arguments and inputs [Listing 3.6].
One major distinction to the concrete implementation is the possibility for con-
ditionals to be neither BoolVal True nor BoolVal False, but BoolVal Top. An-
other value that can be parsed as conditional is Top, in which case the type of
the value cannot be decided by the abstract interpreter, however there is a pos-
sibility that the value might be either BoolVal True or BoolVal False. Both of
those cases have to be accounted for. In consequence, the case distinction is more
complex than it is in the concrete case. What remains is that only values that can
be considered #f lead to the execution of the else-branch. Hence, the first case
BoolVal B.False -> run2 -< e2 remains unchanged. Every value for which there
is no possibility to be considered #f during any execution will, just as in the concrete
case, lead to the execution of the if-branch, which is represented by the last case
_ -> run1 -< e1. For the remaining cases, which are BoolVal Top and Top, it
cannot be certainly decided whether the if- or else-branch has to be evaluated, both
cases are possible. For this reason both branches are evaluated and their resulting
values are joined by the widening operator.
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Example 3.3: Abstract Evaluation of Recursion

(define (f n) (if (= n 0)
1
(f (- n 1))))

(f 100)

Abstact Trace

Environment
[ ]

Store
[ ]

(define (f n) (...))

[f 7→ (f,[ ])] [(f,[ ]) 7→ {λ(n)(...),[f 7→ (f,[ ])]}]
(f 100)

[f 7→ (f,[ ]),
n 7→ (n,[ ])]

[(f,[ ]) 7→ {λ(n)(...),[f 7→ (f,[ ])]},
(n,[ ]) 7→ NumVal IntVal]

(if (= n 0) 1 (f (- n 1)))

(= n 0)
BoolVal Top

1
NumVal IntVal

(f (- n 1))

(- n 0)
NumVal IntVal

[f 7→ (f,[ ]),
n 7→ (n,[ ])]

[(f,[ ]) 7→ {λ(n)(...),[f 7→ (f,[ ])]},
(n,[ ]) 7→ NumVal IntVal]

(if (= n 0) 1 (f (- n 1)))
NonTerminating

NumVal IntVal t NonTerminating
NumVal IntVal

Returning to the over-approximation of loops and recursion. Consider the Scheme
program and its abstract evaluation trace depicted in Example 3.3. Of course our
analysis is not going to call f a hundred times. Fix-point algorithms allow us to
approximate the behaviour of this program. The fix-point of a program guarantees
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us that the state of the program is not going to change in further evaluation. The
evaluation begins by adding bindings that associate f with the for it defined function
to the environment and store. Thereafter, f is applied to 100, 100 is evaluated to
NumVal IntVal and the respective bindings to n are added to the environment and
store. In this modified context the function body of f is evaluated, beginning with
the if-expression. As already discussed the conditional is evaluated first. (= n 0)
evaluates to BoolVal Top as integers are abstracted to NumVal IntVal and it cannot
be certainly decided whether two values of type NumVal IntVal are truly equal.
This causes both branches of the if-expression to be evaluated and their resulting
values to be joined. 1 evaluates to NumVal IntVal, however (f (- n 1)) evaluates
to NonTerminating, as (if (= n 0) 1 (f (- n 1))) is evaluated in the same
context twice. This results in the joining of NumVal IntVal and NonTerminating.
NonTerminating is equivalent to the Bottom element in our lattice and any value
joined with it will result in itself. Hence, fix-point algorithms allow us to analyze
programs without evaluating it completely, in this case saving us many evaluation
steps.

With most elements of the abstract domain discussed, let us focus again on the
implementation of some abstract expressions, beginning with let-expressions.

Listing 3.7: Abstract Let Expressions

Generic Interfaces

alloc :: c Text addr
write :: c (addr,val) ()
extend :: c x y -> c (var,addr,x) y

Concrete Instances

write = EnvStoreT $ askConst $ \widening ->
proc (addr, val) -> do

store <- State.get -< ()
State.put -<

Map.insertWith (\old new -> snd (widening old new))
addr val store

extend (EnvStoreT f) = EnvStoreT $ proc (var,addr,x) -> do
env <- Reader.ask -< ()
Reader.local f -< (Map.insert var addr env, x)

If we remember from the section before, the generic implementation of Let-expres-
sions makes use of three different generic interfaces, alloc, write and extend. The
abstract implementation of alloc has already been discussed. Because the abstract
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environment has not been changed significantly from the concrete environment, no
changes have to be made to the abstract implementation of the extend-interface.
The concrete store was changed to an abstract monotone store. To accommodate
to this change the implementation of the generic write-instance has to be slightly
adjusted. The concrete implementation simply inserts new bindings to the store
and overwrites bindings when the key to be added was already present. Instead
of overwriting bindings the abstract implementation of write applies the widening
operator to values that share the same key and inserts their joined value.

Because Let and LetRec use exactly the same generic interfaces, no more changes
have to be done to implement abstract letrec-expressions.

The just discussed changes to the implementation of our abstract interpreter perfectly
highlight one of the major benefits when implementing abstract analyses in Sturdy.
Apart from the changes made to the respective domain, the effort of implementing
the necessary generic instances is quite minimal, allowing easy additions of new
analyses for programming languages that already have a generic and concrete
interpreter implemented in Sturdy.
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4Evaluation

Our original goal was to implement an analysis that can type check Scheme programs.
For this two main issues had to be resolved. First, the precision of our analysis has to
be good enough to deem the results relevant and meaningful. Second, our analysis
has to be able to analyze Scheme programs that make use of high-order functions
or otherwise have a complex control-flow. In order to evaluate our implemented
analysis1, we pose two research questions that we answer:

(RQ1) Type Analysis for Scheme: Is our analysis able to perform a relevant and
meaningful type analysis on Scheme programs?

(RQ2) Control-Flow Analysis for Scheme: Is our analysis able to analyze Scheme
programs with higher-order functions and other complicated control-flows?

We tested our implementation against several Scheme benchmark programs2, which
originate from a paper that implemented and evaluated another abstract analysis for
Scheme [2]. Every benchmark for which all necessary functionality is supported in
our analysis has been tested, however in particular large programs with more than
50 lines of code did not produce results, due to time and memory constraints. We
were able to produce meaningful results for 10 out of 16 benchmarks, presented
in the paper’s evaluation. The in this evaluation considered benchmarks are from
the Gabriel benchmark programs: cpstak, deriv, diviter, divrec, takl and from the
Scala-AM benchmark programs: collatz, gcipd, nqueens, primtest, rsa.

The meaning of results is different for every abstract analysis, so we will continue by
discussing how to interpret the results given by our analysis and their consequences.
Our analysis can have three different types of results. First NonTerminating, which is
returned if the analyzed program does not terminate. Second MayFail (Errors Val),
which is returned if at some point in the analysis an operation is called that expects
a specific value, but is given a different value. Consider the following program:

(define x 1)
(set! x '(1 2))
(if (number? (car x)) 1 1)

1Publicly available at https://gitlab.rlp.net/plmz/sturdy/-/tree/scheme/scheme
2Publicly available at https://gitlab.rlp.net/plmz/sturdy/-/tree/scheme/scheme%2Fscheme_

files
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x can be either 1 or '(1 2), however car expects a list as input and fails for
any other input. Instead of failing, our analysis will catch the error that may
occur during the evaluation of (car x) and continues with the analysis of the
program. Because the parsed value may contain the expected value (car x) evalu-
ates to Top. Therefore, our analysis returns the following result for this program:
MayFail (["Excpeted list as argument for car, but got Top"], Int). How-
ever, the respective expression evaluates to Bottom, if the parsed value cannot con-
tain the expected value. The third possible return type of our analysis is Success
Val, which states that the program is completely type-safe and does not produce any
type errors. In order to have a meaningful result, Val is required to be another value
than Top or Bottom.

Table 4.1: Comparison of Concrete and Analysis Results

Gabriel and Scala-AM Benchmarks

k = 0 k = 1
Benchmark LOCa Type #False Positives Type #False Positives

cpstak 17 X 0 —— ——
deriv 46 × 3 OOMb OOMb

diviter 118 c X 0 —— ——
divrec 117 d X 0 —— ——
takl 18 × 2 X 0
collatz 17 X 0 —— ——
gcipd 10 X 0 —— ——
nqueens 28 X 0 —— ——
primtest 33 X 0 —— ——
rsa 40 × 1 × 1

ameasured with cloc
bout of memory
clarge amount only due to formatting, 23 lines of meaningful code
dlarge amount only due to formatting, 21 lines of meaningful code

Table 4.1 summarizes our analysis results. Every benchmark program that our
analysis was able to proof type-safety for, is marked with a check-mark. 7 out of the
10 tested benchmarks can be proven type-safe with a context-sensitivity of 0. Three
benchmarks deriv, takl and rsa terminated with MayFail and produced 3, 2 and 1
false positive errors respectively.

So what happened in the cases in which the analysis returned false positives? To
answer the question, let us first consider the abstract evaluation traces for the
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application of the equal? function of which two of those benchmarks, deriv and takl
make use [Example 4.1].

Example 4.1: Concrete and Abstract Evaluation of Recursion, k = 0

(define (equal? x y)
(if (eq? x y)

#t
(if (and (null? x) (null? y))

#t
(if (and (cons? x) (cons? y))

(and (equal? e (car y))
(equal? (cdr x) (cdr y)))

#f))))
(equal? '(2) '(2))

Abstract Trace k=0

Environment
[ ]

Store
[ ]

(define (equal? x y) (...))

[equal? 7→ (equal?,[ ])] [(equal?,[ ]) 7→ {λ(x y)...}]
(equal? '(#t) '(#t))

[equal? 7→ (equal?,[ ]),
x 7→ (x,[ ]), y 7→ (y,[ ])]

[(equal?,[ ]) 7→ {λ(x y)...},
(x,[ ]) 7→ ’(#t), (y,[ ]) 7→ ’(#t)]

(if (eq? x y) #t (if ...))
(if (and (null? x) (null? y)) #t (if ...))
(if (and (cons? x) (cons? y)) (and ...) #f)
(and (equal? (car x) (car y)) ...)

[equal? 7→ (equal?,[ ]),
x 7→ (x,[ ]), y 7→ (y,[ ])]

[(equal?,[ ]) 7→ {λ(x y)...},
(x,[ ]) 7→ Top, (y,[ ]) 7→ Top]

(equal? x y)
...
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Example 4.2: Concrete and Abstract Evaluation of Recursion, k = 1

Abstract Trace k=1

Environment
[ ]

Store
[ ]

1:(define (equal? x y) (...))

[equal? 7→ (equal?,1)] [(equal?,1) 7→ {λ(x y)...}]
2:(equal? '(#t) '(#t))

[equal? 7→ (equal?,1),
x 7→ (x,2), y 7→ (y,2)]

[(equal?,1) 7→ {λ(x y)...},
(x,2) 7→ ’(#t), (y,2) 7→ ’(#t)]

(if (eq? x y) #t (if ...))
(if (and (null? x) (null? y)) #t (if ...))
(if (and (cons? x) (cons? y)) (and ...) #f)
(and 3:(equal? (car x) (car y))

4:(equal? (cdr x) (cdr y)))

3:(equal? (car x) (car y))

[equal? 7→ (equal?,3),
x 7→ (x,3), y 7→ (y,3)]

[(equal?,1) 7→ {λ(x y)...},
(x,2) 7→ ’(#t), (y,2) 7→ ’(#t),
(x,3) 7→ #t, (y,3) 7→ #t]

(if (eq? x y) #t (if ...))
#t
BoolVal B.True

4:(equal? (cdr x) (cdr y))

[equal? 7→ (equal?,1),
x 7→ (x,4), y 7→ (y,4)]

[(equal?,1) 7→ {λ(x y)...},
(x,2) 7→ ’(#t), (y,2) 7→ ’(#t),
(x,3) 7→ #t, (y,3) 7→ #t,
(x,4) 7→ ’(), (y,4) 7→ ’()]

(if (eq? x y) #t (if ...))
#t
BoolVal B.True

#t
BoolVal B.True

The evaluation begins by defining a closure, which contains a lambda that takes
two arguments x and y and checks the values that will be bound to them for
equality as is defined in equal?. The evaluation is straight-forward up to the point
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where equal? is called recursively with (car x) and (car y) as its arguments.
In this case (car x) as well as (car y) each evaluate to NumVal IntVal. After
their evaluation, when equal? is applied to NumVal IntVal and NumVal IntVal,
two bindings have to be added to the environment and store. These bindings are
x 7→ (x,[ ]) and y 7→ (y,[ ]), which have to be added to the environment, as well as
(x,[ ] 7→ NumVal IntVal) and (y,[ ] 7→ NumVal IntVal), which have to be added
to the store. Because the keys (x,[ ]) and (y,[ ]) already exist in the store, the
values to be added have to be joined with the already existing values for that key.
As discussed, the widening operator [Listing 3.3] is responsible for the joining of
values, returning in both cases Top. Now with x and y both associated to Top,
all branches of all if-statements have to be evaluated. At the very latest when
(equal? (car x) (car y)) comes up again, a type error will occur. Scheme’s car
is only defined for lists, however we cannot be sure it will applied to a list. Due to
this imprecision in the evaluation our analysis fails to provide meaningful results in
these cases.

One way to solve this issue is to increase the context-sensitivity. The aforementioned
execution trace used a context-sensitivity of 0, what if we used a context-sensitivity
of 1 instead? As we discussed, our analysis associates each binding with a call-string
that represents the last k expressions that have been evaluated when the binding is
allocated. The evaluation trace, depicted in Example 4.2, is similar to the evaluation
trace with a context-sensitivity of 0. Instead of a binding being associated with the
empty context [ ], now it is associated with the label of the expression that was
evaluated last, before the binding was allocated. E.g. when equal? is first defined,
the expression last evaluated was (define (equal? x y) (...), with label 1. In
consequence the address (equal?,1) is added to the environment and store, instead
of the address (equal?,[ ]). The most important point in the evaluation trace is
the evaluation of the following expression:

(and 3:(equal? (car x) (car y))
4:(equal? (cdr x) (cdr y)))

For k = 1, our analysis can now differentiate between the bindings that have been
created by the original equal? call, labeled with 1, and the two recursive equal?
calls, labeled with 3 and 4. This means that the values that were allocated for the
original equal? call will never have to be joined with the values of the two recursive
equal? calls. In addition the length of the lists to be compared is only one, hence
only one iteration is necessary to terminate and fresh bindings can be allocated for
every argument x and y of equal?. Therefore, our result BoolVal True is precise,
not only in its type, but also in its concrete value.
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However, assume the length of the lists to be compared exceeds one and more than
one iteration is necessary. This in turn means 4:(equal? (cdr x) (cdr y)) will
be called more than once. Every time new bindings for x and y have to be allocated
and every time this binding will be associated with the same label and the the same
variable name, namely (equal?,4). Therefore, beginning with the second iteration
values have to be joined again and precision is lost. Nonetheless, one crucial benefit
is gained by increasing the context-sensitivity from 0 to 1. Even with larger lists no
type errors will occur. Remember for a context-sensitivity of 0 car and cdr were
called with Top, when they required the type of their argument to be list. This
occurred because the values that were evaluated by (car x), that usually are no
lists, were joined with the lists originally parsed to equal? as arguments. Because
the three equal? calls are now separated, this cannot happen. This demonstrates
that increasing the context-sensitivity even by just one, can be an effective tool,
when proving type-safety.

Unfortunately increasing the context-sensitivity comes with a very high cost in
complexity and run-time, allowing only one of these two imprecise benchmarks
to benefit from it [Table 4.1]. David Van Horn proves in his dissertation [8] a
0-control-flow analysis to be complete for polynomial time and any k-control-flow
analysis with k > 0 to be complete for exponential time, verifying our empirical
observation of drastically rising run-times for context-sensitivities greater than 0.

The use of the equal? function is responsible for producing two false positive errors,
one for the application of car to Top and one for the application of cdr to Top.
Therefore, one false positive for deriv and one for rsa remain unresolved. Both
programs include an if-statement of the following form:

(if (check x) (foo x) (error "check did not pass"))

A check of this sort cannot be certainly declared true in either case, hence the if- and
else-branch have to evaluated and their respective values joined. The execution of
the else-branch inevitably leads to the introduction of a false positive error, that is
caused by low precision.

Let us come back to the example program, which demonstrated the necessity for
an analysis that can handle complex control-flow caused by higher-order functions.
This program was the following:

(let ((f (lambda (x) (x 1)))
(g (lambda (y) (+ y 2)))
(h (lambda (z) (+ z 3))))

(+ (f g) (f h)))
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Sturdy provides a feature to record the control-flow graph of the analyzed program.
The recorded control-flow graph for this program is depicted in Figure 4.1. Remem-
ber, the control-flow of this program is hard to statically decide, because the function
1 is applied to, within the lambda-expression that is bound to f, is only decided
at run-time. We implemented the control-flow analysis to be able to associate an
expression with a set of expressions that it might transfer control to. We declared
the set, which x transfers control to, as the following: {(lambda (y) (+ y 2)),
(lambda (z) (+ z 3))}. Therefore, we expect the control-flow graph to illustrate
that x transfers control to both of theses expression, as both have to be considered
whenever x is applied.

Figure 4.1: Control-Flow Graph of Program with Higher-Order Functions

So how is the control-flow depicted by the control-flow graph? The arrows from one
expression to another imply a transfer of control in the direction of the arrow. The
control is first handled by the let-expression, which parses control to four expres-
sions. This is to be expected as let first evaluates its 3 bindings, here depicted as
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λ x, λ y and λ z. let then transfers control to its body (+ (app f h) (app f g)),
which transfers control to both of its sub-expressions (app f g) and (app f h).
Both sub-expressions parse control to two expressions that performs variable look-
ups, (app f g) to f and g and (app f h) to f and h. (app f g) as well as
(app f h) have to transfer control to λ x to which f is bound. λ x transfers
control to its body (app x 1), which itself transfers control to another expression
that performs a variable look-up x, and a literal expression 1. Now it transfers
control to λ y and λ z, which is the exact behavior we expected and wanted from
our control-flow analysis.

Lastly we want to answer our posed research questions:

(RQ1) Type Analysis for Scheme: Our implemented type analysis is able to prove
8 out of 10 tested benchmarks type-safe, where a standard type checker most
likely would not have been able to prove a single program type-safe. However,
the benchmark programs are not large programs by any means, the longest having
about 50 lines of meaningful code. Our implementation struggled to process larger
programs, due to our analysis having a high complexity in space and time. We
conclude, that our implemented analysis and its abstract domain are precise enough
to perform a type analysis on small Scheme programs.

(RQ2) Control-Flow Analysis for Scheme: The implemented analysis is able to
analyze Scheme programs that have complicated control-flows and use higher-order
functions, which we demonstrated by illustrating the control-flow graph for an
exemplary Scheme program that uses higher-order functions [Figure 4.1] and of
course by being able to analyze our benchmark programs [Table 4.1]. Using the
example of the equal? function [Example 4.1, Example 4.2], we demonstrated the
cost which comes with this kind of analysis. Because our analysis cannot take the
order of expressions into account and relies on joining values in the store, a lot of
precision can be lost. In turn this means that our type analysis might return false
positives, if we cannot guarantee a high context-sensitivity, which is not always
possible because of the large increment in complexity. We conclude, that even
though the control-flow is analyzed soundly, in practise precise results can only be
guaranteed for less complex Scheme programs.
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5Related Work

The issue we encountered when analyzing programs that used equal?, is a known
issue of control-flow analyses. There are approaches to solve this problem, improving
performance as well as precision. We shortly present the two most promising, which
were developed by Noah Van Es et al. [2] and Dimitrious Vardoulakis et al. [10].

Noah Van Es et al. use the approach of abstract garbage collection to improve the
precision and performance of control-flow analyses. Garbage collection is a known
strategy applied during concrete evaluation to free memory that is no longer used
and can also be applied during abstract evaluation. It is motivated by the exact
problem we encountered in our implementation. A bounded set of addresses can
cause addresses to be allocated multiple times for different values. When same
addresses are allocated, garbage can be brought back to life, in the sense that values
that in a concrete evaluation are non-reachable, continue to influence the abstract
evaluation. For our analysis this was the case when arguments of the previous
equal? iteration had to be joined with arguments of the next iteration. Noah Van
Es et al. use abstract reference counting to free addresses that are bound to values
that cannot be reached. Their implementation guarantees a sound and complete
abstract garbage collection, completely removing any garbage. Empirical results
prove that precision and performance can be increased significantly. Therefore,
abstract garbage collection is able to improve precision without the usual cost in
performance. Their approach might also benefit the in this work presented type and
control-flow analysis.

Dimitrious Vardoulakis et al. describe the problem we encountered as a mismatch
of calls and returns. This is caused by the introduced approximation of unbound
recursive calls to a call-string bounded by k. For k=0, as demonstrated for equal?,
a function can return to any of its callers, it cannot be distinguished e.g. between
the original call of equal? and the two recursive calls, requiring the joining of
values, which causes imprecision. Just as in our case this can lead to false positives,
which might weaken the performance of the analysis. The loss of precision can
cause spurious paths to be evaluated which in turn can introduce further spurious
paths creating a chain effect. Dimitrious Vardoulakis et al. present CFA2, the first
flow analysis with precise call and return matching for typed and untyped language
that make use of higher-order functions and tail calls. Instead of a store and an
environment, CFA2 uses a stack and heap, in which variable bindings are stored and
looked up. For each function call a new frame is pushed to the stack that holds its
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variable bindings including its parsed arguments. Whenever a function returns or
terminates the top-most frame is popped from the stack. Therefore, it is guaranteed
that each function call has a fresh environment and no need to join values arises.
Their empirical results prove their analysis being more precise on a program than
either a 0-control-flow analysis or a 1-control-flow analysis.
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6Conclusion and Future Work

We presented an abstract analysis that performs a type and control-flow analysis
on small Scheme programs. The analysis is implemented in the Sturdy framework.
Sturdy requires abstract analyses to be separated in a generic and abstract inter-
preter and additionally requires a concrete interpreter. We have implemented these
three interpreters for Scheme. The generic interpreter captures the similarities
between concrete and abstract interpreters by operating solely on interfaces, which
are implemented by the concrete and abstract interpreters respectively. The con-
crete interpreter performs concrete evaluation on a Scheme program, the abstract
interpreter performs said type and control-flow analysis.

A large benefit of analyses implemented in Sturdy is the ease of extensibility. Because
every abstract interpreter only instantiates the interfaces of a generic interpreter, it
is fairly easy to implement other abstract analyses for a programming language that
already has an existing structure implemented in the framework. Therefore, future
work on this project may include the addition of other abstract interpreters.

Because this work does not support every feature of Scheme, extending the imple-
mented interpreters to support e.g. vectors, as well as Scheme’s call/cc present
themselves as further additions to this work.

As discussed in the Related Work section CFA2 [10] and abstract garbage collec-
tion [2] are promising approaches to further improve precision and performance
of control-flow analysis. In addition both approaches promise an increase in per-
formance. A comparison in performance and precision between our implemented
analysis and a similar analysis utilizing these approaches can yield interesting and
relevant results.
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