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Abstract

Static analyses represent an indispensable part of the IT sector. Either as a tool,
that helps developers to detect errors and preserve a good code quality, or as an
essential component of compilers. But the development of static analysis is a complex
task and prune to errors. Thus, the analysis developers have to deal with a high
number of errors while developing. Unfortunately, the debugging support for the
development of static analysis is practically non-existing. Hence, this work puts focus
on improving the debugging support for static analyses. This goal is accompanied by
the research question:
Which information is relevant for the debugging of static analyses and how to present
the information to the analysis developer efficiently?
To resolve this question, we worked together with static analysis developers. Our
work leads to the results, that the stepwise and intuitive presentation of data, that
either emerges from the execution of a static analysis or the analyzed behavior itself,
improves the debugging of static analyses. To illustrate our results, we implemented
a debugging tool for static analysis based on Sturdy, a framework for creating sound
static analysis in Haskell. Our work was evaluated by a qualitative assessment with
a Sturdy developer and made clear, that our approach lead to an improvement of
the debugging process of static analyses.
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Abstract (German)

Statische Analysen sind aus dem heutigen IT Sektor nicht mehr wegzudenken. Sei
es als Werkzeug, welches Entwicklern dabei hilft, Fehler zu vermeiden und eine
gute Code Qualität beizubehalten, oder als fester Hauptbestandteil von Compilern.
Jedoch ist die Implementierung von statischen Analysen eine komplexe Aufgabe, die
anfällig für Fehler ist. Dementsprechend müssen sich die Entwickler von statischen
Analysen häufig mit Fehlern auseinandersetzen, die während dem Implementieren
auftauchen. Unglücklicherweise gibt es nur wenige Werkzeuge, die dafür ausgelegt
sind, Fehler in statischen Analysen zu finden und zu beheben. Daher möchten wir
den Fokus dieser Arbeit darauf legen, die Fehlersuche und Behebung in statischen
Analysen zu verbessern. Das lässt die folgende Forschungsfrage aufkommen:
Welche Informationen sind wichtig, für das finden und beheben von Fehlern in
statischen Analysen und wie sollen diese Informationen präsentiert werden?
Um diese Frage zu beantworten, haben wir mit statische Analyse Entwicklern zusam-
men gearbeitet. Unsere Arbeit führte zu dem Ergebnis, dass eine schrittweise und
intuitive Präsentation, von Informationen, die entweder die Ausführung der statis-
chen Analyse verdeutlichen, oder Daten des Analyseziels an sich, das Finden und
Beheben von Fehlern unterstützt. Um unsere Ergebnisse zu verdeutlichen, haben wir
eine Debugging-Erweiterung für Sturdy, ein Haskell Framework für das Erstellen von
statischen Analysen, implementiert. Um die Ergebnisse dieser Arbeit zu bewerten,
haben wir eine qualitative Bewertung mit einem Sturdy Entwickler durchgeführt.
Diese hat zu dem Ergebnis geführt, dass unser Ansatz zu einer verbesserten Fehler-
suche und Fehlerbehebung bei statischen Analysen führt.
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1Introduction

Software is steadily growing in size and complexity. Modern software is an integral
part of our lives and has a diverse set of applications like predicting extreme weather
events, organizing entire companies or even saving lives in medical application. But
the development of beneficial and correct software without mistakes is challenging.
Many factors have to interact and often big teams of developers work together to
implement the software. This leads to an increasing number of possible sources for
mistakes, while developing software. Mistakes are frustrating and costly as they
claim a large part of a software developers workload. Ideally, bugs are detected in
the implementation or testing phase of the software engineering process, before
the software is deployed in production. In this case, the mistake only leads to time
expenditure. But a bug in production can cause serious financial damage. Therefore
applies, the sooner a mistake is detected, the better. An indispensable tool for the
early detection of bugs is the static analysis. Static analyses process source code
without running it actually. So errors are shown to the developers, before they
run their programs. Almost every IDE uses some kind of static analyses to support
software developers and improve their work.

Unfortunately, with more complex software and programming languages, the de-
velopment of static analyses is getting more complex too. Programming languages,
code constructs and frameworks are steadily developed further, what leads to more
aspects to consider for analysis developers. Another reason for the high complexity
of developing static analyses are the two source codes, the analysis developers have
to focus on. On the one hand, there is the source code of the analysis itself and
on the other hand there is the source code of the analyzed program. Because of
these facts, the development of static analyses is prone to errors. So the analysis
developers have to deal with a high number of bugs, while debugging tools for static
analyses are barely available. Unfortunately, existing debugging approaches are
often unsuitable for troubleshooting two corresponding source codes.

Methods like debugging print statements are inappropriate, due to the mostly large
output of static analyses. For example, we instrumented a type and control-flow
analysis for Scheme with debugging print statements and got 415 lines of debugging
trace, while analyzing a program, that contained only 6 lines of code. Such a high
amount of debugging information at once makes it hard to pin down the source of
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a bug. On the other hand, reducing the amount of printed debugging information,
to find the source of bugs more easily, does not help either. The reduced amount
of debugging information reduces the probability, that the bug can be seen from
the printed debugging information. Another conventional debugging approach
is to use an existing debugger, for a particular programming language. In the
case of developing static analyses, this approach intends to use a debugger for the
programming language, the analysis is written in.

But the problem here is, that the debugging information would be presented on the
wrong level of abstraction. So the presented information is not provided to be read
by developers, but to be utilized by an executed program. Figure 1.1 on page 3
shows two data structures, which contain relevant information for debugging, on
the two levels of abstraction. The abstraction level of the analysis contains only the
in-memory representation of the control-flow graph. To have use for the analysis
developers, the in-memory representation of the control-flow graph haves to be
processed to an actual graph. The graphical representation of the graph is more
intuitive for the developers and thus brings more benefits for troubleshooting. So
it is with the analysis store. The low-level representation of the data structure is
recursive, and the analysis developers would need to process the entire output, to
understand the store. The representation on a higher abstraction level is already
processed and dereferenced, so the developers understand the data structure on
the first glance. Altogether the available debugging tools for static analyses are
limited and conventional debugging approaches are unsuitable. It is not clear
which information is relevant for troubleshooting and how to display the debugging
information.

To tackle the described problems, this work presents the implementation of a debug-
ging extension for Sturdy, a Haskell framework, that facilitates the creation of sound
static analyses. Our debugger allows the analysis developers to set breakpoints on
the analyzed code and execute the analysis stepwise. Every time a breakpoint is
reached, debugging information is sent to the developers. This ensures, that the
analysis developers get only the debugging information, they need at a particular
moment. The user interface contains a graphical representation of the control-flow
graph, this helps to comprehend the execution order of the analyzed code. The
displayed stack trace contains all function calls of the analyzed code in chronological
order. The store consists of a mapping of addresses and values, that are used by the
analysis. Our dereferenced representation presents the stack in an intuitive way. The
last debug information in the user interface is the environment data structure. The
environment maps variables to addresses and contributes to the total understanding
of the analysis.

2 Chapter 1 Introduction



Fig. 1.1: Store element and control-flow graph representations. In-memory representation
of the left side, intuitive representation on the right side.
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Our implementation provides debugging support for static analyses by abstract
interpretation, for the programming language Scheme. The server side of the
debugger was directly integrated into the Sturdy framework, because this is a simple
way to control the execution of the analysis and gather debug information. Due
to the amount and complexity of the debug information a graphical user interface
was required, which is represented by a web application. To determine the data
structures, the debugger should show, we worked together with Sturdy developers
and implemented the data structures, which seemed to provide the most relevant
information for troubleshooting. The used data structures and their meaning for
debugging static analyses will be explained further in Section 2. Due to the fixpoint-
algorithm, Sturdy is based on, the debugging component was implemented as a
combinator. Some components of the implementation can even be used language
independent, as discussed in in Section 4. The domain specific debugger was
presented to a Sturdy developer, to get a suitable feedback on our solution, for the
previously described problems. We carried out a qualitative assessment with the
analysis developer by letting the developer debug faulty static analyses, with and
without the usage of the debugger.

Summarized, we are making the following contributions:

• We present an approach, that simplifies debugging of static analyses in the
Sturdy framework

• We demonstrate, which information is required for efficient troubleshooting,
while developing static analysis, and how this information has to be presented
to the user.

• We implemented the debugger as a fixpoint combinator, that interrupts the
execution of the fixpoint algorithm to offer debug information to the user.

4 Chapter 1 Introduction



Fig. 1.2: Entire user interface of the sturdy debugging tool (screenshot)
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2Debug Information

In the introduction we already talked about the debug information, that will be
presented to the analysis developers while debugging. This section will take a
closer look to the debug information, that will be displayed while debugging static
analyses of Scheme programs by abstract interpretation and explain the individual
components. Although we implemented our debugging tool as a domain specific
debugger for the Sturdy framework, the approaches we discuss in this section are
generally applicable for debugging static analyses. In Sturdy, every single component
of the debug information is gathered from a particular data structure. These data
structures are primarily used to store information while a static analysis is executed.
The size of the single data structures grows proportional with the progress of the
analysis. The debug information, we implemented in this work, consists of four data
structures, which we determined in consultation with sturdy developers. But the
provided debug information is not settled and can easily be customized for current
needs. Because Sturdy is based on a fixpoint algorithm, that consists of different
combinators, debug information can be added and removed with small effort. Each
of these combinators contributes a particular functionality to the static analysis.
For instance, if the recordControlFlowGraph combinator is integrated into the
fixpoint algorithm, the control-flow graph gets recorded during the execution of
the static analysis. So to provide more debugging information to the client, the
corresponding combinator has to be integrated into the fixpoint algorithm and the
data structure, which contains the required information, has to be sent to the client,
every time a breakpoint is reached. With an adaptation of the user interface, the new
information is completely integrated into the debugger and gets displayed properly
to the analysis developers.

So one of our main problems, concerning the debug information, was to determine
which information should be displayed to the user. While the static analyses get
executed, several data structures are involved, what leads to a large amount of
possible debug information to display. But not each of the data structures provides
useful information for troubleshooting, so we have to filter out the data structures
with a use for debugging. Thus, to determine the most important debug information,
we worked together with Sturdy developers. Because of their experience with
the implementation of static analyses, Sturdy developers can evaluate better, if
the information of a data structure is helpful for debugging. While questioning the
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Sturdy developers about useful debug information, two different kinds of information
have turned out as useful. The first kind of information provides a better insight of
the static analysis and its execution. The analysis developers tried to print out this
kind of information, while debugging static analyses with conventional tools. Data
structures like the environment or the store are examples for this kind of information.
The second kind of debug information refers to the particular purpose of a static
analysis. So while executing a static control-flow analysis, it is beneficial to see the
current state of the control-flow graph itself at every breakpoint. So this kind of
information is able to show exactly, which code construct of the analyzed code leads
to an error.

So now we have a better idea of the information, which is important for debugging
static analyses. But that leads directly to our second problem, namely the suitable
presentation of the debug information. The previously discussed data structures con-
tain complex information and can grow big in size. So if the analysis developers just
add print statements to the analysis code, the entire debug information gets output at
once. So the developers have to process a high amount of debug information at the
end of the analysis. Thus, it takes a lot effort to find the right section of the output,
that reveals the error. Another challenge is to find a suitable way to process the raw
debug information, so the information gets presented in an intuitive form. Because
the debug information is gathered from the corresponding data structures, the un-
processed information is only available as an in-memory representation of the data.
Moreover some of the data structures are complex, so the in-memory representation
of the data is not readable for humans. For example, the in-memory representation
of the control-flow graph consists of a list of nodes, where each node has a label
and an identifier. The label shows the corresponding expression and the identifier
provides uniqueness. Additionally, there is a list of edges, where each edge contains
two node identifiers. So to take any advantage out of the in-memory representation
of the graph, the developer has to assign each node to the corresponding edges.
From a certain size of the graph, this is impossible, without taking notes or even
drawing the graph. This takes a lot of time and nerves from the analysis developers.
But even if there is a suitable way to process the information of the data structures,
some information just gets too big. As already discussed, the data structures, that
contain the debug information, grow steadily while the static analysis gets executed.
If the analyzed program reaches a certain size, the data structures get too big to just
process the data and display the information. To cover these cases, we have to find a
way, to deal with big data structures. To put together the problems in an example,
we executed a static Scheme analysis by abstract interpretation and enabled the
debug tracing. Figure 2.1 on page 9 shows what happens, if the debug information,
that is derived from big and complex data structures, gets displayed at once and
without proper processing. Even if the analyzed code only contained 6 lines of code,
the output was 415 lines long.

8 Chapter 2 Debug Information



Fig. 2.1: Debug trace of an executed static analysis of a Scheme program
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To improve the sudden presentation of the debug information, we implemented
a possibility, to execute the static analysis stepwise. The debug information gets
gathered from the current state of the data structures at each step. Due to the
stepwise execution of the analysis, the debug information will not get presented at
once, but bit by bit. To determine the steps of the execution, the analysis developers
have to set breakpoints in the analyzed code. Because we extended the parser by
breakpoints, the debug combinator is able to stop the execution of the analysis, if a
breakpoint gets detected. At each breakpoint, the current state of the data structures
gets processed and displayed to the analysis developers. Another functionality that
provides a bit by bit presentation of the debug information, is the Step function.
The Step function allows the analysis developers to continue the execution of the
analysis, until one more expression gets evaluated. So an even finer grade of the
bit by bit presentation of the information can be achieved. To check the correctness
of the executed analysis, we included a list of the currently processed expressions
into the user interface. Next to the list of current expressions, we present the list
of already evaluated expressions and their assigned value as shown in Figure 2.2.
These lists provide a possibility for the analysis developers, to check each evaluated
expression for correctness and thus localize the error more accurate. Because the
debug information now gets presented bit by bit, the analysis developers only get
confronted with information, they need for troubleshooting. Future states of the
data structures will not be displayed, until the analysis gets executed far enough.
This leads to a better understanding of the execution of the analysis and a faster
localization of bugs. To deal with the size and complexity of the data structures,

Fig. 2.2: Processed and evaluated expressions (screenshot from user interface)

more specific solutions are required. Every data structure is individual and needs a
special processing, to get useful debug information. The data structures can be too
big, too complex or both, to display them without processing. Therefore, we will
discuss the four data structures, we implemented, seperately. Each data structure
will get explained in detail, and our method to deal with size and complexity will be
described.

Stack: The analysis stack stores the function calls, while the program gets analyzed.
So every stack element represents one function call. Unfortunately, the analysis
stack does not store the names of the functions, but the function body, because not
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every function has to be assigned to a variable in Scheme. To get the function name,
we have to compare the function body to every store element. The store contains
mappings of addresses and values, so if there is an address, that maps to the required
function body, we can extract the name of the function. We are able to reduce the
complexity of the data structure with this method. But the store can grow big in
size, so we have to find way to deal with a high amount of stack elements. Figure
2.3 shows how a scrollable table is able to fix the problem. With help of the scroll
functionality, the analysis developers will not get overwhelmed with too many store
elements. But they are still able to retrace the entire stack.

Fig. 2.3: List of function calls (analysis stack) (screenshot from user interface)

Store: The analysis store represents a mapping of addresses to their values. Due to
the high usage of lists in Scheme, the values of the store elements are mainly lists.
Unfortunately, lists in Scheme are represented trough pairs. A pair only contains
two values, so multiple, interlocked pairs are required, to form a list with more
than two elements [5]. This leads to a a recursive data structure. The in-memory
representation of the store is not processed and accordingly the values are not
resolved. So the analysis developers have to observe the entire store, to resolve
the value of the address they need. This requires a lot of time. Because the store
grows fastly, the task gets even more complicated, with a big analyzed program.
To tackle this problem, we decided to represent the store in a table. One row of
the table consists of a clickable store element. If the analysis developer clicks on
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a store element, the value of the selected element gets resolved and displayed. To
retrace the resolution of the recursive value, a graph gets displayed, that shows the
procedure of the resolution. Every passed store value is represented as a node and
edges show the structure of the list. Beside the high complexity of the store data
structure, it can grow big in size. If the store consists of a high number of elements
and the analysis developers have to find a specific address, they have to scroll trough
the entire store. This problem was solved trough a filter function of the store table,
so the analysis developers can enter the required address into a form field, and the
table will filter for the required address, as shown in Figure 2.4.

Fig. 2.4: Analysis store as a table with filter function. On the right side is a resolved store
element with the value and the graph (screenshot from user interface)

Environment: The environment consists of mappings of variables to addresses. In
contrast to the store data structure, the environment is more intuitive, even the in-
memory representation of it. Compared to the other data structures, the environment
stays small. Even when the static analysis gets executed, the environment does not
grow. So to display the environment properly, a scrollable table is required as shown
in Figure 2.5 on page 13. The scrollable table will even cover the rare cases of a high
number of elements in the environment data structure. The values of the variable
name and the address are not recursive and can be displayed the way they are.

Control-Flow Graph: The last data structure, we gathered debug information from
in this work, is the control-flow graph. The control-flow graph is a directed graph,
that describes the execution order of a program [6]. The in-memory representation of
this data structure is unintuitive too. Thus, the raw information has to be processed,
before it gets presented to the analysis developers. The raw information consists of
a list of nodes and the corresponding list of edges. We carried out the processing
of the information with help of a graph library. So the nodes and edges just have
to get parsed in the right way, to get displayed intuitively, as seen in Figure 2.6.
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Fig. 2.5: Analysis environment as a list (screenshot from user interface)

Here is the size of the data structure a problem too. With a progressive analysis, the
graph grows quickly in size. To still guarantee a proper representation, the graph is
displayed in a draggable and zoomable window. Thus, the analysis developers can
analyze every component of the graph, no matter how big it is.

Fig. 2.6: Zoomable and dragable control-flow graph (screenshot from user interface)
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3Implementation

We implemented a domain specific debugger to provide debugging support for
Sturdy. With our concrete implementation we get a better insight of the research
question, namely which information is relevant for debugging static analyses and
how this information has to be presented. Additionally, we are able to answer the
research question more precisely and evaluate our results more accurate. So in
particular, we implemented a debugger for static analyses by abstract interpretation
of Scheme programs. The debugging server and the implemented debugging process
are language and analysis independent. Only the processed and displayed data
structures are more tied to the language of the analysed code and the analysis type.
But even if the displayed debugging information is language and analysis specific,
the principles, that have to be obeyed while gathering the debug information, are
similar in general, as described more precisely in in Section 4. So the debugging
server was integrated into the Sturdy framework. This seems to be most sensible way,
because the execution of the analysis can be controlled and the data structures can
be read out. As previously discussed, the data structures are complex and grow big
in size, thus the information has to be processed graphically, to provide an intuitive
presentation.

So to deal with a large amount of graphical data, we need to implement the client
side as a graphical user interface. Unfortunately, there are no existing debugging
interfaces, we can use. Most of the existing interfaces are designed for a specific
domain, so the presentation of our debug information will not be optimal. Therefore,
we implemented our own user interface. A Haskell user interface, directly connected
to the Sturdy framework, seems like a good approach, but the existing packages for
graphical user interfaces in Haskell are limited. So we decided to implement the
user interface as a web application. A web application provides various libraries for
all kind of graphical data and the high usage of web applications, makes it easy to
maintain and extend the code. This is because there is a high number of developers,
which are able to program web applications and a high amount of documentation is
available online.

So because we use a web-application, to represent the client side, we have to
establish the communication between our web-application and the Sturdy framework.
The supply of existing debugging protocols we can use is limited, because the
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debugging protocols are mostly designed domain specifically. So in the most cases,
the protocols are too complicated for our use case. This is because conventional
debuggers are primarily designed to debug an executable program or a script.
So the information transmitted with the protocol is closer to the machine-level
than we need it to be. So to avoid an unnecessarily complicated protocol, we
decided to design our own debugging protocol. The protocol consists of a small
number of uncomplicated messages and even provides customizable components,
to improve language independence. The following subsections will describe the
implementation of the single components in detail. Additionally, we will talk about
the implementation of the processing and the presentation of our Scheme and
analysis specific data structures.

3.1 Server-Client Communication

Because we implemented our user interface as a web-application, we can not just
access the required information directly, but we have to communicate with the server
over an interface. To find a suitable way, to implement the communication type and
a corresponding interface, we have to take a look at our specific use case. Roughly,
we can break down our debug application to an user-interface, that tells the server,
it is connected to, what program haves to be debugged and when the execution
of the debugged analysis has to be stopped. While the analysis gets executed, our
server has to send information to the user interface, until a breakpoint is reached.
So our use case tells us: The protocol we need for the communication does not
require a high amount of message types, but the messages should be able to contain
complex objects. Unfortunately, existing protocols for debugging are designed for
troubleshooting executable programs or scripts of a lower level. So they mostly
contain a high number of different message types, which are able to transport only
simple messages. Thus there is no existing protocol matching our use case, we
decided to design our own protocol. This decision allows us to choose the way of
communication freely, what lead us to a web socket based communication. The
benefits of the communication over a web socket will get clear, after a of the itself. A
web socket can be considered as a bi-directional tunnel between the server and the
client [4]. The tunnel gets created, as soon as the client connects to the server. The
messages, which are exchanged in the web socket protocol, are in the JSON format.
This allows us to send complex debug information. We can too easily exchange our
messages and only have to adapt the corresponding handlers, not considering the
web socket.

With help of the web socket protocol, we can easily automate the process of sending
messages and processing received messages. This works, because the protocol we
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designed contains a tag, that tells either server or client, what kind of message
arrived. As soon as the analysis developer decides to take an action, the client
sends a message to the server, which gets automatically processed and answered
by the corresponding response. Now the server sends a message, which will again
get recognized by the tag, but this time on the client side. So the client processed
the information and displays them with the corresponding handler. But to ensure,
that the message handlers do not produce errors, we have to send messages, which
are designed in a certain way. How the messages have to look like, is settled by
the debugging protocol we designed, which now will get explained in detail. The
definitions of the messages in our Haskell implementation is shown in Figure 3.1.

Fig. 3.1: Definition of the web socket messages in a Haskell file.

The analysis developers have to set the breakpoints for debugging on the user in-
terface. This means, the code of the analyzed program has also to be inserted into
the user interface. To make sure, the analysis developer does not have to type or
copy and paste the analyzed code, we implemented a functionality, that loads the
code from the server into the user interface. To make this feature possible, designed
the LoadSourceCode message pair. The LoadSourceCodeRequest is sent from
the client to the server and contains the path of the file to load as a string. Once
the server receives the request, it reads the file and uses the information, to create
the LoadSourceCodeResponse. The response contains the source code of the
requested file and as soon as the response arrives at the client side, the code gets

3.1 Server-Client Communication 17



displayed in the text editor.
Now that the analysis developers have the code of the analyzed program, they can
insert breakpoints on the critical parts of the program. After the analyzed code
is provided with breakpoints and the analysis developers press the Start button,
the client sends a StartDebuggerRequest. This request contains the entire
code of the program, with the breakpoints included. Afterward, the server starts
to execute the analysis of the sent source code. The StartDebuggerRequest

has no specific antagonist, although several messages get sent, after the debug-
ging process was started. While the analysis gets executed, web socket messages
regarding the processed expressions get sent continuously. For every expression,
that is evaluated, a CurrentExpressionResponse is sent to the client, that only
contains the expression. As soon as the evaluation of an expression has finished, an
EvaluatedExpressionResponse will be sent off from the server. This response
contains a pair of the evaluated expression and the corresponding value. After a
breakpoint is detected, the server starts to gather and process debug information.
This debug information will be packed up into the BreakpointResponse. To
BreakpointResponse is supposed to vary, depending analysis type and language
of the analyzed program. Depending on which information is gathered and pro-
cessed by the server, the message has to look different.
To control the execution of the analysis, there are the ContinueRequest and the
StepRequest . Both messages lead to a continuation of the analysis. While the
ContinueRequest tells the server, to execute the analysis until another breakpoint
is detected, the StepRequest only continues the execution for the next expression.
Both messages consist only of a tag. The user interface expects the same responses,
as if the debugging process was started (CurrentExpressionResponse, Eval-

uatedExpressionResponse, BreakpointResponse ).
To bring the user interface back to it’s initial state, we included the Refresh mes-
sage pair into out protocol. The RefreshRequest gets sent by the client, after
the user presses the Refresh button and only contains a tag. The client expects a
RefreshResponse as answer, which contains a boolean variable, that indicates
the success of the Refresh process.
If an inadmissible message arrives at the server, the user interface will get an Ex-

ceptionRespone. This message type only contains the text of the exception and
the tag. Figure 3.2 on page 19 shows the sequence diagram of a possible exchange
of messages.

3.2 Integration of the Debugger into Sturdy

The server side of our debugging tool was integrated into the Sturdy Framework,
thus the corresponding code is written in Haskell. One of the main components
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Fig. 3.2: Illustration of possible exchange of messages between client and server
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on the server side is the web socket server, that is able to handle all messages, the
client side could send. The second component we implemented is the debugging
combinator, that can be included into each type of analysis for each programming
language, that Sturdy supports. To implement the debug combinator in a proper
way, a debug arrow was required, that we will explain more accurate later, after we
talked about the implementation of the server.

Because the server is supposed to answer each request, the client side could possibly
send, every possible message needs it’s own handler. The handlers we implemented
are pictured in Figure 3.3 on page 21. Our server consists of an outer loop, that is
listening to incoming messages, if the execution of the analysis was not started yet.
The inner loop is implemented into the debugging combinator and starts listening,
if a ContinueRequest is required, to resume the execution of the analysis. At
first, the handlers of the outer loop will get explained. For each received message,
the server checks the tag, the message contains and calls the right handler for
the message type. If the server receives a LoadSourceCodeRequest from the
client, it starts to read out the stated path to get the source code. After this process
has finished, the read data get packed up in a LoadSourceCodeResponse. This
object gets encoded into a Text data type and finally sent over the web socket
to the client. If the analysis developer wants to start the debugging process, the
source code and the corresponding breakpoint are sent over the web socket, in
form of a StartDebuggerRequest. As soon as the server has recognized the
message, the transmitted source code, that contains the breakpoints, gets parsed.
The Sturdy framework already supported a similar function, that parses the analyzed
Scheme code of a given path. We had to modify the existing function, to insert
the analyzed code directly as an argument. The Scheme parser had also to be
modified. In particular, we extended it, so it can parse breakpoints. If the parser
detects a breakpoint, it will just add it in front of the following expression, so
we are able to stop the execution of the analysis at the right point. After the
transmitted code was parsed successfully, the execution of the analysis is started
with the list of expressions, the parser returned. Because the fixpoint combinator
of the started analysis contains the debug combinator, the debug combinator will
be executed for every expression. If the combinator detects a breakpoint, the
available debug information will be sent to the client and the inner listening loop
of the server is called, that will be explained soon. If the server receives a request,
for the continuation of the analysis, but the analysis was not started yet, the outer
listening loop of the server sends an ExceptionRespone to the client. An incoming
RefreshRequest will let the server restore the used DebugState to it’s default
values and send a RefreshResponse, that contains an indicator for the success of
the restoration. With the previously explained message handlers, the outer loop of
our web socket server is able to answer every possible message properly.
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Fig. 3.3: Outer listening loop of websocket server (pseudo-code

To understand the inner listening loop of our server, we have to explain the debug
combinator more accurate. As the static analyses in Sturdy are based on fixpoint
algorithms, we implemented the debugging functionality as a fixpoint combinator,
so it just has to be added to an analysis and the debug information will be gathered
(see fig. 3.4, page 22). The single fixpoint combinators, the analyses consist of,
are called for every expression, that gets processed by the analysis. Accordingly,
the debug combinator is executed for every processed expression too. The debug
combinator has access to several arrows [7] and a DebugState where information
of the debugging process and the web socket connection are saved. As soon as
the debugging combinator is called, the current expression gets wrapped into a
CurrentExpressionResponse and is sent to the client. If an expression was
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evaluated successfully, the evaluated expression is sent to the client too, in form of
an EvaluatedExpressionResponse.

Fig. 3.4: Debug combinator and illustration of the relation between combinator and fixpoint
algorithm

Because the evaluation of an expression is only completed, if the evaluation of all
subexpressions was completed. Thus, the current expression and the evaluated
expression are asynchronous, so we need two different messages for them. Further
in the execution, the debug combinator checks, if the execution of the analysis has
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to be stopped. The execution has to be stopped either if the current expression is
a breakpoint, or if a Step was initialized by the analysis developer. To check if the
analysis developer executed a Step, the debug combinator checks if the boolean
step variable is set to True. If so, the same procedure is executed, as if a breakpoint
was detected. If neither a breakpoint was detected, nor the client side initialized
a Step command, the execution of the analysis gets continued. But if a breakpoint
was detected or a Step command requested, the debug combinator calls the inner
listening loop of our web socket server. At the beginning of the inner loop, the
boolean step variable in the DebugState is set on false, for the case a Step was
requested. After this, the language and analysis dependent debug information is
gathered and processed. The processed debug information is used to create the
BreakpointResponse object. This object is sent to the client side, with help of the
sendMessage function, the DebugArrow provides. After the debug information
was sent, the debug combinator starts listening for either a ContinueRequest

or a StepRequest. Every other received message gets ignored and the server
continues listening. As soon as either a ContinueRequest or a StepRequest

is received, the execution of the analysis continues. In the case of a received
ContinueRequest, the execution gets executed further, until a breakpoint is
detected. In the case of a StepRequest, the step variable in the DebugState is
set to True, so the analysis will be stopped again, as soon as the next expression
gets processed.

3.3 Implementation of the User Interface

We implemented the user interface as a web-application. The timeframe of this work
required a fast prototype. And trough the different analysis types and programming
languages that Sturdy supports, the web-application has to be able to show the right
components depending on analysis type and language. So we decided to implement
the user interface with Angular, a Typescript framework. With a high number of
available libraries, the fast prototype was guaranteed. The modularization, Angular
provides, supports the further development of the user interface. This leaves the
possibility open, to implement components, that display debug information, for every
kind of language and analysis type. Surely, the existing components can be reused
for similar data structures. This subsection will focus on the general debugging
procedure, while Section 3.4 will explain the language and analysis dependent debug
information, we implemented on the user interface.

The screenshot in Figure 3.5 shows the components of the user interface, that are
responsible for the execution of the analysis or provide a better understanding of the
execution. The header contains different buttons to start and control the execution
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of the analysis. Below you can see the text-editor, that contains the analyzed code
and the breakpoints, the analysis developers have to debug. Under the text editor,
there are two lists, that show expression. The left list shows the current expression,
while the right list shows the already evaluated expressions and their corresponding
value. This helps the analysis developers to comprehend the execution of the
analysis better and thus helps localizing the errors. Every button sends a particular
request message to the server. The corresponding response is processed by a handler
function. Depending on the tag, the received message contains, the handler gets
chosen and executed. The handlers process the information and display it to the
analysis developers.

Fig. 3.5: Control elements for analysis execution (screenshot). A text editor for the analyzed
code and buttons to control the execution on top of the text editor

The explanation of a typical debugging process will make the single components clear.
To start a debugging process, the analysis developers have to insert the analyzed code
into the text editor. Here we used the Ace text editor, that provides support for several
languages. The analyzed code can either be directly written or copied into the editor.
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Another possibility to insert the required code into the editor, is to use the Load Source
Code functionality. Here the analysis developers only have to insert the required
filename into the associated form and press the Submit button. This will send a
LoadSourceCodeRequest to the server. The LoadSourceCodeResponse will
contain the requested source code. The loadSourceCodeResponseHandler will
insert the code into the editor and thus present it to the analysis developers. These
now only have to insert the breakpoints into the code. The breakpoints are inserted
by typing the string "breakpoint" in front of the expression, the analysis developers
wants the analysis to stop the execution. To start the execution of the analysis, the
analysis developers have to press the Start button. This action will lead to the sending
of a StartDebuggerRequest, that contains the source code and the breakpoints,
which are in the text editor. The Continue and the Step button, next to the Start
button, continue the execution of the analysis after it has been stopped. The analysis
will either be executed until the next breakpoint is detected (ContinueRequest)
or until the next expression is processed (StepRequest).While the analysis gets
executed, the client constantly receives CurrentExpressionResponse for every
processed expression and EvaluatedExpressionResponse for each evaluated
expression. The processed expressions will just be presented in a list. The list will
always be scrolled to the bottom, so the analysis developers see the latest expression,
that were processed. If the expression is longer than a particular number of chars, it
will get abbreviated. By hovering over the expression, the analysis developer is able
to see the entire expression. The list of evaluated expressions provides the hover
and automated scroll functionalities too, but it additionally contains the resulting
value of the expression. With these lists, the analysis developer is able to check
every evaluated expression for correctness. If the execution of the analysis is on
hold, either because a breakpoint was detected or the user requested a Step, the
client receives a BreakpointResponse. Because the structure of this message
is language and analysis dependent, so are the corresponding components, that
process and display the information. Because the components are inserted into the
user interface as a grid element, they can easily be exchanged.

3.4 Transmitted Debug Information

While the previous subsections explained how the more general components of
the debugging tool were implemented, this subsection will focus on the specific
components, we implemented for our prototype. In particular, we will discuss the
components, that are responsible for displaying the debug information to the analysis
developers. Our implementation is intended to debug static analysis by abstract
interpretation of Scheme programs. Thus, we implemented the processing and the
display of the store, the stack, the environment and the control-flow graph.
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The store maps addresses to values, used by the abstract interpreter. But the values
are not retrievable directly, but only in a recursive presentation. So the values have
to be resolved, before they provide a benefit to the analysis developers. Additionally,
the store can get really big and contain a high number of entries, the analysis
developers have to deal with. So the processing of the store data structure begins on
the server side. If the store element contains a function body, the string that shows
the function body gets abbreviated. The current store is retrieved, from the latest
stack element. The addresses and values get converted to a tuple of string, and
finally the entire store gets converted into a list of store elements. This conversion
simplifies the sending of the debug information over the web socket. As soon as the
store is received by the user interface, the single store elements get displayed in a
table. This table provides a filter function, to fastly find required addresses, even if
the table contains a high number of elements. The single table rows are clickable. If
the store element contains a recursive value, the user just has to click on the element
in the table, so the value will be resolved. The resolved value and the corresponding
graph, that visualizes the resolution of the value, will get displayed to the analysis
developers. The resolution of the store element helps on the client side, by two
different functions.

The stack contains the function calls of the analyzed program, and it’s processing
begins on the server side as well. To process the stack properly, the expression and
the entire store are required for every stack element. The functions, that were called,
are not saved by their name, but by their function body. This is because not every
function is assigned to a particular name. To display the stack intuitively, we have
to gain the function name with help of its body. This can be done, by filtering the
store for a value, which is identical to the required function body. As mentioned
previously, the store values are abbreviated, if they are function bodies. So first we
have to get the raw store values for every stack element. Afterwards, we compare
the function bodies of the expression with the values of the store elements, until
we find a match. This has to be done for every stack element. So the processing
on the server side consists of the gathering of the unprocessed store elements and
the expression for every stack element. This information is sent to the client side,
where the corresponding names for each function body are found. These names get
displayed in a list.

The environment of the analysis maps variables to addresses. Thus, not much effort
is required to process the environment. The only processing happens on the client
side, where the single values of the environment are put into a table. Now the
analysis developers already have an intuitive representation of the data structure.

To provide an intuitive representation of the control-flow graph, more steps are
required. After the graph is gathered on the server side, it is only available in
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an in-memory representation. The list of nodes and the list of edges get packed
into a web socket message and are sent to the client. As soon as the information
arrives at the client side, the corresponding handler passes the lists to a graph library
(ngx-graph), that displays a draggable and zoomable graph. Thus, a high number
of nodes in the graph will not be a problem, because the user can just navigate to
the required section of the graph.
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4Language and Analysis
Independence

Static analyses are used in several areas of the IT sector. They bring different
benefits, depending on what kind of analysis is executed and what kind of target the
analysis has. These different benefits are required by the developers of almost every
existing programming language, so they can develop software faster and with fewer
errors. So because different kinds of static analyses are used to analyze programs in
several programming languages, a language and analysis independent debugging
tool would provide obvious benefits. With a language and analysis independent
debugging tool, the analysis developers only have to implement small additions to
the existing debugging tool, to get debugging support for their preferenced language
and analysis. The adaptations to the debugging tool only need to be implemented
once and shared with the coding community, to provide a debugging tool for a
specific programming language or analysis.
Although our implementation only provides debugging support for the analysis of
Scheme programs by abstract interpretation, we kept the language and analysis
independence in mind while developing. This leads to design decisions, that prepare
the debugging tool for language and analysis independence. Even if we did not
implement a language and analysis independent debugging tool, we accomplished
some first steps in the direction of a language and analysis independent debugger
for static analyses.

More precisely, one of the main contributions we made for language and analysis
independence, was to implement the main part of the debugger as a fixpoint combi-
nator. In Sturdy, a fixpoint combinator can be inserted into any fixpoint algorithm.
As a result of that every static analysis in Sturdy is based on a fixpoint algorithm, the
debug combinator could be included into any kind of analysis, for any programming
language, Sturdy supports. But before doing this, the language and analysis depen-
dent functions like creating a BreakpointResponse and detecting a breakpoint
have to be passed to the combinator as parameters. If any language and analysis
dependent aspect of the existing debug combinator would be removed and passed to
the combinator as a parameter, the debug combinator could be considered language
and analysis independent.
Another language ans analysis independent aspect of our implementation is the
entire communication trough the web socket server. The transmitted messages can
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be used for every language and analysis. Especially the BreakpointResponse,
that actually contains language and analysis dependent data, can be customized
with a parametrized BreakpointResponse object. So if the BreakpointRe-

sponse data type looks different, depending on language and analysis, the cor-
responding BreakpointResponse will adapt properly. Of course, every kind of
BreakpointResponse requires an own handler on the client side to display the
information in the intended way. So the Server-Client Communication also provides
a foundation for a language and analysis independent debugging tool.
The last design decision, that assists the language and analysis independence, is the
structure of the user interface. The user interface is based on a grid list and every
displayed debug information is one item of this list. So if components, that show
debug information, have to be added, removed or exchanged, just a small adaptation
is required. The modularization support, that Angular provides, helps too with the
handling of several components, that display debug information.

So to extend the debugging tool, to be able to debug either static analyses for
another programming language or a different type of static analyses, the following
work steps are required: First, the debug combinator has to be modified, to a lan-
guage and analysis independent combinator. This is done by passing the language
and analysis dependent functionalities as arguments into the debug combinator. A
BreakpointResponse object, that contains the language and analysis dependent
debug information has to be specified. For the new BreakpointResponse, there
has to be a fitting handler and corresponding components on the client side, that
display the debug information.
In conclusion we can say, that the debugging tool is not language and analysis
dependent yet. But due to design decisions, that were language and analyse inde-
pendence oriented, this work contributes some first steps for a language and analysis
independent debugging tool.
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5Evaluation

To evaluate this work, we carried out a qualitative assessment with a Sturdy devel-
oper. Since the relevant debug information and the way to present it are obeyed
in our implementation, an assessment of our debug extension is a valid way to
evaluate our work. First, the Sturdy developer will debug a static analysis without
the support of our debugging tool. After this, the developer will be allowed, to use
our debugging tool for troubleshooting. Both debugging processes will be observed
and compared with each other, to evaluate our implementation. To simulate the
debug process, we inserted an error into the analysis code. To ensure the same
conditions on both processes, the error we inserted was shown to the developer.

At first, the Sturdy developer simulated the debugging process without our debugging
tool. First the existing unit tests were executed. The unit tests perform static analyses
and compare the actual result with the expected result. Trough these tests, the
analysis developers are able to see, which code constructs of the analyzed code lead
to a faulty analysis. Either the incorrect results of the analysis are discovered, after
executing the tests, or they are discovered while testing own analyzed code. So after
the analyzed code, that leads to an incorrect analysis was discovered, the analysis
developer hopes, that the amount of code is small. A small amount of code is more
easy to analyze, because big files lead to a high amount of debug trace output.
Now the analysis developer tries to localize the error exactly. To achieve that, the
developer steadily removes code or changes it in a way, that reduces the debug trace.
The analysis developer tries meticulously to remove any unnecessary code, because
any small reduction of code leads to a more clear debug trace. After the reduction of
the code, the developer has to check, if the analyzed code still produces the error. As
soon as the analyzed code is reduced completely, the analysis developer executes the
analysis with an enabled debug trace. The debug trace contains each expression and
the corresponding return value. Additionally, the current state of important data
structures gets output with any expression. Now the developer notices for every
processed expression, if the returned value corresponds to the expected return value.
If the developer finds an expression, that returns a faulty value, the debug trace gets
analyzed in detail. Data structures like the store are output in a unintuitive way.
Other data structures, that could contain important information of the error, are not
even presented to the user. Because some data structures, like the control-flow graph
get really big at the end of an analysis, only a stepwise displaying makes sense. This
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leads to a lot of time spent, to understand the data structures. If the more accurate
analysis of the trace leads the developer to the source of error, the developer just
fixes the error. In the other case, that the developer does not find the source of error,
the trace gets analyzed again, or the analyzed code is reduced further, until the
source of error is found.

To use the debug tool, a n analyzed code, that leads to a faulty analysis has to be
found first. Similar to the debugging process without the usage of the tool, the
existing test cases are primarily used for that. After the code was present to the
developer, he started to localize the source of error. The developer can use a more
readable list of evaluated expression to find approximately the source of error. After
this, a breakpoint is inserted before the approximate source of error and the analysis
is executed with the tool. After the breakpoint was reached, the developer uses
the Step command, to find the faulty expression. If the analyzed code, that lead
to a faulty analysis, contains obvious opportunities, to reduce the code and still
preserve the error, the code is reduced. A reduction of the analyzed code still needs
to less output, but the developer does not try anymore, to reduce the analyzed code
meticulously. After the developer found the faulty expression, he started analyzing
the debug information, that was directly presented in an intuitive way. If the source
of error was still not found, the analysis developer would repeat this process, with
other faulty analyzed expressions, until he is able to find the exact source of error.

To compare both debugging processes, we have to compare the two processes of
error localization first. After this we will take a look at the two different processes, of
analyzing the localized error in detail. So in both processes, the analysis developer
tried to reduce the analyzed code. This is an efficient method, to take out the
complexity of the analysis with small effort. Without the usage of the debugging
tool, every little reduction of the code was important, to reduce the output of
the debug trace. With the debugging tool, advantage was only taken of obvious
opportunities, to reduce the code. To find the faulty analyzed expression without
the debugging tool, the analysis developer had to work trough the debug trace of
the entire analysis and compare each expression with its return value. With the
debugging tool, the developer was able to navigate to the approximately to the
faulty analyzed code and then observe the evaluated expressions stepwise. So the
detection of the code construct in the analyzed code, that leads to a faulty analysis,
is more convenient and faster with our debugging tool. After the faulty section of
the analyzed code was found, the developer started to analyze the data structures.
In the debug trace, the data structures were output in an in-memory representation.
Thus, they were unintuitive and the developer required a lot of time, to understand
them. In the debugging tool, the data structures are already processed and thus in
an intuitive form. So the developer can understand the data structures faster and
thus understand the source of error more efficient.
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This lets us conclude, that the stepwise execution of the analysis helps the developers,
to understand the analysis better and find the code construct, that leads to a faulty
analysis, faster. This is because the developers do not get overwhelmed with the
debug information of the analysis at once, but can see the available information step
by step. The analysis of the data structures gets also more efficient with the usage of
the debugging tool. The debug information is directly presented in an intuitive way,
so the developers are able to understand the data structures faster.
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6
Related Work

Since this work deals with debugging static analyses, more precisely finding out
which information is relevant for troubleshooting static analysis and how this infor-
mation has to be presented, this section will take a closer look at the state of the
art in debugging static analyses. Even if static analyses are an important tool for
developers, that helps to find errors while implementing common programs, the
market for tools that support the development of static analyses is not saturated. In
particular the supply for tools, that help static analysis developers troubleshooting
static analyses, is low.
So to understand errors better in static analyses, the developers mostly use debug-
ging approaches, that were usually intended to support troubleshooting in common
programs. Usually, static analysis developers use debugging approaches like an
existing debugger for the programming language, the analysis is written in. Print
statements or self-made test cases, that compare an expected analysis result to
the actual result of a static analysis, are also common approaches, the analysis
developers use. There is a high amount of debugging approaches, that work for
troubleshooting in common programs [1]. But these approaches are not well suited
for the debugging of static analyses. Print statements mostly produce a too large
output, that complicates the localization of bugs, or the output is too small, to pro-
vide enough information about the contained bugs. The usage of a regular debugger,
for the programming language of the analysis code, leads to the presentation of
unprocessed debugging information. And writing test cases requires a lot of work
and it is impossible to cover every possible error.
Other methods, that static analysis developers often use for troubleshooting, are
debugging approaches, that are better adapted to static analysis. Such a debugging
approach is given by Delta Debugging [2]. Delta Debugging means, that the static
analysis developers try to steadily reproduce the errors of the faulty analyses, while
reduce the code of the analyzed program. The analyzed program gets smaller, while
the error is preserved. Thus the possibilities for the source of the error got decreased,
and the execution of the analysis produces a smaller debug trace, that is more
convenient to be analyzed. This approach was also used by the questioned Sturdy
developers. Even if existing debugging approaches can improve the debugging of
static analyses, they are not able to provide the functionalities, that a debugging
tool, specially designed for troubleshooting static analyses, is able to provide.
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The only debugging tool, known to us, that is specially designed for static analysis,
is VisuFlow [3]. The research team, that created VisuFlow, wanted to impement a
tool for debugging static analysis. To do determine the structure of the debugging
tool, the team conducted a survey. 115 participants, that work with static analyses,
answered questions about their work. The survey lead to the decision, to create
an Eclipse-based debugging environment, for data-flow analyses written on top of
Soot. Soot is a framework, that provides the development of static analyses, for Java
programs [8]. The debugging tool was evaluated by a user study with 20 participants.
The study has shown, that the analysis developers found errors faster, is they used
VisuFlow. So the developers, that use VisuFlow are able to more easily understand
bugs of the static analyses and thus fix those bugs faster. To classify our work,
we should compare it to VisuFlow, since this work also created a domain specific
debugging tool, for static analyses. But the research team, that created VisuFlow,
had a different approach. While it was clear from the beginning, that our work will
be based on the Sturdy framework, the VisuFlow team conducted a survey, to decide
what their debugging tool should look like. Trough this survey they decided, what
kind of static analyses their tool has to support and which programming language
will be analyzed. So VisuFlow is focused on a particular kind of static analysis for
a particular programming language. Although our implementation only supports
static analysis by abstract interpretation for Scheme programs, we designed our tool
in a way, that could enable debugging support for several static analyses and several
programming languages in the future. This was possible, because Sturdy supports
several static analyses for different programming languages, in contrast to Soot, that
only enables analyses for Java.
Since the project, that was responsible for VisuFlow, had a larger scope than our
work, they were able to evaluate their results more precisely. Their user study
showed, that the visualization of debugging data is important for the usability of the
debugger. So we tried to focus on a good visualization and an intuitive presentation
of the debugging information too. While VisuFlow allows the analysis developers, to
set breakpoints on the analysis code and the analyzed code, the Sturdy debugging
extension only provides the breakpoint functionality for the analyzed code. Thus,
the execution of the analysis can be controlled more accurate with VisuFlow.
This lets us conclude, that VisuFlow as well as our implementation are both domain
specific debugging tools, for a particular framework. But since Sturdy is more
general in terms of analysis type and analyzed programming language than Soot,
our implementation leaves space for more generalization.
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7Conclusion

Because of the lack of debugging support for static analyses, this work aims at
simplifying troubleshooting of static analyses. To facilitate a better debugging ex-
perience, we had to answer the following research question: Which information is
relevant for the debugging of static analyses and how to present the information
to the analysis developer efficiently? In cooperation with static analysis developers
we elaborated the research question. To present a first implementation of our ideas,
we implemented a debug extension for the Sturdy framework. Our implementation
provides debugging support for static analyses by abstract interpretation for Scheme
programs. The prototype also helps us to evaluate our ideas with a qualitative
assessment.
Our work has shown, that relevant information for debugging static analyses can
either be related to the execution of the static analysis, or contain information about
the goal of the analysis itself. The presentation of the debug information should
happen stepwise, so the analysis developer does not get overwhelmed by too much
information at once. In addition, the debug information should be presented in an
intuitive form. Since the size of the present debug information depends on the size
of the analyzed code, the presentation should be also clear for a high amount of
information.
Our classification for important debug information is probably applicable for static
analyses in general. So it is with the presentation of the debug information. Principles
for presenting debug information, that emerge from this work, are also applicable
to static analyses in general. Since our prototype is implemented in the Sturdy
framework, the debugging support we provide is limited by the analyses types and
programming languages, that Sturdy supports. Still, the debugging extension itself
can be easily expanded, to support more types of static analyses or programming
languages, that can be analyzed.
So the future work, that emerges from our work, is mainly to refactor the debugging
combinator to a language and analysis independent combinator. Additionally more
components should be implemented, so several kinds of debug information can be
presented properly to the developers.
The outlooks from this work are a faster development of static analyses in Sturdy,
because the analysis developers will now understand their errors faster and thus
will be able to fix them more quickly. Additionally, this work created a foundation
for the implementation of debugging tools in the Sturdy framework. Future imple-
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mentations of the debug support for other languages and analyses can rely on this
implementation and reuse its main components.
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